274
Views
11
CrossRef citations to date
0
Altmetric
Cyclone

Effect of feed body geometry on separation performance of hydrocyclone

, , , &
Pages 2959-2970 | Received 14 Jul 2018, Accepted 12 Nov 2018, Published online: 03 Dec 2018

References

  • Schuetz, S.; Mayer, G.; Bierdel, M.; Piesche, M. (2004) Investigations on the flow and separation behaviour of hydrocyclones using computational fluid dynamics. International Journal of Mineral Processing, 73: 229–237. doi:10.1016/S0301-7516(03)00075-9.
  • Otto, N.; Platz, S.; Fink, T.; Wutscherk, M.; Menzel, U. (2016) Removal of micropollutants with coarse-ground activated carbon for enhanced separation with hydrocyclone classifiers. Water Science and Technology, 73: 2739–2746. doi:10.2166/wst.2016.128.
  • Bicalho, I.C.; Mognon, J.L.; Shimoyama, J.; Ataíde, C.H.; Duarte, C.R. (2013) Effects of operating variables on the yeast separation process in a hydrocyclone. Separation Science and Technology, 48: 915–922. doi:10.1080/01496395.2012.712597.
  • Xu, J.R.; Luo, Q.; Qiu, J.C. (1991) Research on the preseparation space in hydrocyclones. International Journal of Mineral Processing, 31: 1–10. doi:10.1016/0301-7516(91)90002-Z.
  • Chu, L.Y.; Chen, W.M.; Lee, X.Z. (2000) Effect of structural modification on hydrocyclone performance. Separation and Purification Technology, 21: 71–86. doi:10.1016/S1383-5866(00)00192-1.
  • Vieira, L.G.M.; Damasceno, J.J.; Barrozo, M.A. (2010) Improvement of hydrocyclone separation performance by incorporating a conical filtering wall. Chemical Engineering and Processing: Process, 49: 460–467. doi:10.1016/j.cep.2010.03.011.
  • Vieira, L.G.M.; Silvério, B.C.; Damasceno, J.J.; Barrozo, M.A.S. (2011) Performance of hydrocyclones with different geometries. Canadian Journal of Chemical Engineering, 89: 655–662. doi:10.1002/cjce.v89.4.
  • Yang, Q.; Wang, H.; Wang, J.; Li, Z.-M.; Liu, Y. (2011) The coordinated relationship between vortex finder parameters and performance of hydrocyclones for separating light dispersed phase. Separation and Purification Technology, 79: 310–320. doi:10.1016/j.seppur.2011.03.012.
  • Tang, B.; Xu, Y.; Song, X.; Sun, Z.; Yu, J. (2015) Numerical study on the relationship between high sharpness and configurations of the vortex finder of a hydrocyclone by central composite design. Journal of Chemical and Engineering Data, 278: 504–516. doi:10.1016/j.cej.2014.11.022.
  • Hwang, K.J.; Chou, S.P. (2017) Designing vortex finder structure for improving the particle separation efficiency of a hydrocyclone. Separation and Purification Technology, 172: 76–84. doi:10.1016/j.seppur.2016.08.005.
  • Martínez, L.F.; Lavín, A.G.; Mahamud, M.M.; Bueno, J.L. (2008) Vortex finder optimum length in hydrocyclone separation. Chemical Engineering and Processing: Process, 47: 192–199. doi:10.1016/j.cep.2007.03.003.
  • Ghodrat, M.; Kuang, S.B.; Yu, A.B.; Vince, A.; Barnett, G.D.; Barnett, P.J. (2014) Numerical analysis of hydrocyclones with different vortex finder configurations. Minerals Engineering, 63: 125–138. doi:10.1016/j.mineng.2014.02.003.
  • Wang, B.; Yu, A.B. (2008) Numerical study of the gas–liquid–solid flow in hydrocyclones with different configuration of vortex finder. Journal of Chemical and Engineering Data, 135: 33–42. doi:10.1016/j.cej.2007.04.009.
  • Delgadillo, J.A.; Rajamani, R.K. (2007) Exploration of hydrocyclone designs using computational fluid dynamics. International Journal of Mineral Processing, 84: 252–261. doi:10.1016/j.minpro.2006.07.014.
  • Vieira, L.G.M.; Silva, D.O.; Barrozo, M.A.S. (2016) Effect of inlet diameter on the performance of a filtering hydrocyclone separator. Journal of Chemical Engineering and Process Technology, 39: 1406–1412. doi:10.1002/ceat.201500724.
  • Zhang, C.; Wei, D.; Cui, B.; Li, T.; Luo, N. (2017) Effects of curvature radius on separation behaviors of the hydrocyclone with a tangent-circle inlet. Powder Technology, 305: 156–165. doi:10.1016/j.powtec.2016.10.002.
  • Zhang, C.; Cui, B.; Wei, D.; Zhao, Q.; Luo, N.; Feng, Y. (2017) Predicting the optimum range of feed flow rate in a hydrocyclone using the method combined flow pattern and equation model. Powder Technology, 319: 279–288. doi:10.1016/j.powtec.2017.06.064.
  • Ghodrat, M.; Kuang, S.B.; Yu, A.B.; Vince, A.; Barnett, G.D.; Barnett, P.J. (2014) Numerical analysis of hydrocyclones with different conical section designs. Minerals Engineering, 62: 74–84. doi:10.1016/j.mineng.2013.12.003.
  • MinKov, L.L.; Dueck, J.H. (2012) Numerical modeling of a nonmonotonic separation hydrocyclone curve. Journal of Engineering Physics and Thermophysics, 85 (6): 1317–1326. doi:10.1007/s10891-012-0777-8.
  • MinKov, L.L.; Dueck, J.H.; Neesse, T. (2014) Computer simulations of the Fish-Hook effect in hydrocyclone separation. Minerals Engineering, 62: 19–24. doi:10.1016/j.mineng.2013.10.003.
  • Vakamalla, T.R.; Koruprolu, V.B.R.; Arugonda, R.;, et al. (2017) Development of novel hydrocyclone designs for improved fines classification using multiphase CFD model. Separation and Purification Technology, 175: 481–497. doi:10.1016/j.seppur.2016.10.026.
  • Delgadillo, J.A.; Rosales, M.G.; Perez, A.C.; Ojeda, C. (2013) CFD analysis to study the effect of design variables on the particle cut size in hydrocyclones. Asia-Pacific Journal of Chemical Engineering, 8: 627–635. doi:10.1002/apj.v8.5.
  • Mokni, I.; Dhaouadi, H.; Bournot, P.; Mhiri, H. (2015) Numerical investigation of the effect of the cylindrical height on separation performances of uniflow hydrocyclone. Chemical Engineering Science, 122: 500–513. doi:10.1016/j.ces.2014.09.020.
  • Vakamalla, T.R.; Mangadoddy, N. (2017) Numerical simulation of industrial hydrocyclones performance: role of turbulence modelling. Separation and Purification Technology, 176: 23–39. doi:10.1016/j.seppur.2016.11.049.
  • Wang, B.; Chu, K.W.; Yu, A.B. (2007) Numerical Study of Particle− Fluid Flow in a Hydrocyclone. Industrial and Engineering Chemistry Research, 46 (13): 4695–4705. doi:10.1021/ie061625u.
  • Kuang, S.B.; Chu, K.W.; Yu, A.B.; Vince, A. (2012) Numerical study of liquid–gas–solid flow in classifying hydrocyclones: effect of feed solids concentration. Minerals Engineering, 31: 17–31. doi:10.1016/j.mineng.2012.01.003.
  • Ghodrat, M.; Qi, Z.; Kuang, S.B.; Ji, L.; Yu, A.B. (2016) Computational investigation of the effect of particle density on the multiphase flows and performance of hydrocyclone. Minerals Engineering, 90: 55–69. doi:10.1016/j.mineng.2016.03.017.
  • Sripriya, R.; Kaulaskar, M.D.; Chakraborty, S.; Meikap, B.C. (2007) Studies on the performance of a hydrocyclone and modeling for flow characterization in presence and absence of air core. Chemical Engineering Science, 62: 6391–6402. doi:10.1016/j.ces.2007.07.046.
  • Evans, W.K.; Suksangpanomrung, A.; Nowakowski, A.F. (2008) The simulation of the flow within a hydrocyclone operating with an air core and with an inserted metal rod. Journal of Chemical and Engineering Data, 143: 51–61. doi:10.1016/j.cej.2007.12.023.
  • Zou, J.; Wang, C.; Ji, C. (2016) Experimental study on the air core in a hydrocyclone. Drying Technology, 34: 854–860. doi:10.1080/07373937.2015.1046554.
  • Marins, L.P.M.; Duarte, D.G.; Loureiro, J.B.R.; Moraes, C.A.C.; Freire, A.P.S. (2010) LDA and PIV characterization of the flow in a hydrocyclone without an air-core. Journal of Petroleum Science and Engineering, 70: 168–176. doi:10.1016/j.petrol.2009.11.006.
  • Cui, B.; Wei, D.; Gao, S.; Liu, W.-G.; Feng, Y.-Q. (2014) Numerical and experimental studies of flow field in hydrocyclone with air core. Transactions of Nonferrous Metals Society, 24: 2642–2649. doi:10.1016/S1003-6326(14)63394-X.
  • Wen, C.Y.; Yu, Y.H. (1966) Mechanics of fluidisation. Chemical Engineering Progress Symposium Series, 62: 100–111.
  • Ergun, S.;. (1952) Fluid flow through packed columns. Chemical Engineering Progress, 48 (2): 89–94.
  • Xu, Y.; Song, X.; Sun, Z.; Tang, B.; Li, P.; Yu, J. (2013) Numerical investigation of the effect of the ratio of the vortex-finder diameter to the spigot diameter on the steady state of the air core in a hydrocyclone. Industrial and Engineering Chemistry Research, 52: 5470–5478. doi:10.1021/ie302081v.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.