1,106
Views
70
CrossRef citations to date
0
Altmetric
Simulation

CFD simulation of the structured packings: A review

&
Pages 2536-2554 | Received 11 Jun 2018, Accepted 13 Nov 2018, Published online: 10 Dec 2018

References

  • Humphrey, J.L.; Keller, G.E. (1997) Separation Process Technology; New York: McGraw-Hill
  • Stichlmair, J.; Fair, J.R. (1998) Distillation: Principles and Practices; New York: Wiley-VCH
  • Moradi, R.; Karimi-Sabet, J.; Shariaty-Niassar, M.; Amini, Y. (2016) Experimental investigation of nanofibrous poly(vinylidene fluoride) membranes for desalination through air gap membrane distillation process. Korean Journal of Chemical Engineering, 33 (10): 2953–2960. doi:10.1007/s11814-016-0137-z
  • Moradi, R.; Monfared, S.M.; Amini, Y.; Dastbaz, A. (2016) Vacuum enhanced membrane distillation for trace contaminant removal of heavy metals from water by electrospun PVDF/TiO2 hybrid membranes. Korean Journal of Chemical Engineering, 33 (7): 2160–2168. doi:10.1007/s11814-016-0081-y
  • Marsousi, S.; Karimi-Sabet, J.; Moosavian, M.A.; Amini, Y. (2019) Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics. Chemical Engineering Journal, 356: 492–505. doi:10.1016/j.cej.2018.09.030
  • Li, H.; Wu, Y.; Li, X.; Gao, X. (2016) State-of-the-art of advanced distillation technologies in China. Chemical Engineering and Technology, 39 (5): 815–833. doi:10.1002/ceat.201500656
  • Kister, H. (1992) Distillation Design; McGraw-Hill Education: New York, USA
  • Górak, A.; Olujić, Z. (2014) Distillation: Fundamentals and Principles.
  • Olujić, Z.; Jödecke, M.; Shilkin, A.; Schuch, G.; Kaibel, B. (2009) Equipment improvement trends in distillation. Chemical Engineering and Processing: Process Intensification, 48 (6): 1089–1104. doi:10.1016/j.cep.2009.03.004
  • Olujić, Ẑ.; Behrens, M.; Spiegel, L. (2007) Experimental characterization and modeling of the performance of a large-specific-area high-capacity structured packing. Industrial and Engineering Chemistry Research, 46 (3): 883–893. doi:10.1021/ie051146f
  • Olujić, Z.; Rietfort, T.; Jansen, H.; Kaibel, B.; Zich, E.; Frey, G.; Ruffert, G.; Zielke, T. (2012) Experimental characterization and modeling of high performance structured packings. Industrial and Engineering Chemistry Research, 51 (11): 4414–4423. doi:10.1021/ie202585t
  • Olujić, Ž.; Seibert, A.F.; Kaibel, B.; Jansen, H.; Rietfort, T.; Zich, E. (2003) Performance characteristics of a new high capacity structured packing. Chemical Engineering and Processing, 42 (1): 55–60.
  • Bessou, V.; Rouzineau, D.; Prévost, M.; Abbé, F.; Dumont, C.; Maumus, J.-P.; Meyer, M. (2010) Performance characteristics of a new structured packing. Chemical Engineering Science, 65 (16): 4855–4865. doi:10.1016/j.ces.2010.05.029
  • Dastbaz, A.; Karimi-Sabet, J.; Ahadi, H.; Amini, Y. (2017) Preparation and characterization of novel modified PVDF-HFP/GO/ODS composite hollow fiber membrane for Caspian Sea water desalination. Desalination, 424: 62–73. doi:10.1016/j.desal.2017.09.030
  • Schultes, M. (2014) The impact of tower internals on packing performance. Chemie-Ingenieur-Technik, 86 (5): 658–665. doi:10.1002/cite.v86.5
  • Jahromi, P.F.; Karimi-Sabet, J.; Amini, Y. (2018) Ion-pair extraction-reaction of calcium using Y-shaped microfluidic junctions: an optimized separation approach. Chemical Engineering Journal, 334: 2603–2615. doi:10.1016/j.cej.2017.11.129
  • Nieuwoudt, I.; Corio, C.; Degarmo, J. (2010) Improvement in random packing performance. Petroleum Technology Quarterly (Ptq), 4: 67–75.
  • Motlagh, A.H.A.; Hashemabadi, S.H. (2008) 3D CFD simulation and experimental validation of particle-to-fluid heat transfer in a randomly packed bed of cylindrical particles. International Communications in Heat and Mass Transfer, 35 (9): 1183–1189. doi:10.1016/j.icheatmasstransfer.2008.07.014
  • Dmitrieva, G.B.; Berengarten, M.G.; Klyushenkova, M.I.; Pushnov, A.S. (2005) Effective designs of structured packings for heat and mass exchange processes. Chemical and Petroleum Engineering, 41 (7): 419–423. doi:10.1007/s10556-005-0132-4
  • Olujić, Ź.; Kaibel, B.; Jansen, H.; Rietfort, T.; Zich, E. (2013) Fractionation research Inc. test data and modeling of a high-performance structured packing. Industrial and Engineering Chemistry Research, 52 (13): 4888–4894. doi:10.1021/ie302715x
  • Olujić, Z.; Seibert, A.F.; Fair, J.R. (2000) Influence of corrugation geometry on the performance of structured packings: an experimental study. Chemical Engineering and Processing: Process Intensification, 39 (4): 335–342. doi:10.1016/S0255-2701(99)00095-1
  • Olujić, Ž.; Behrens, M.; Colli, L.; Paglianti, A. (2004) Predicting the efficiency of corrugated sheet structured packings with large specific surface area. Chemical and Biochemical Engineering Quarterly, 18 (2): 89–96.
  • Dreiser, C.; Gneist, G.; Bart, H.J. (2013) CFD-assisted characterization and optimization of the structured mass transfer packing QVF DURAPACK®. Chemical Engineering and Technology, 36 (4): 545–551. doi:10.1002/ceat.201200531
  • Olujić, Ž.; Kaibel, B.; Jansen, H.; Rietfort, T.; Zich, E.; Frey, G. (2003) Distillation column internals/configurations for process intensification. Chemical and Biochemical Engineering Quarterly, 17 (4): 301–309.
  • Zhang, Y.L.; Zhu, H.M.; Yin, Q.X. (2013) CFD study on the local mass transfer efficiency in the gas phase of structured packing. Chemical Engineering and Technology, 36 (7): 1138–1146. doi:10.1002/ceat.201300097
  • Alekseenko, S.V.; Markovich, D.M.; Evseev, A.R.; Bobylev, A.V.; Tarasov, B.V.; Karsten, V.M. (2008) Experimental investigation of liquid distribution over structured packing. AIChE Journal, 54 (6): 1424–1430. doi:10.1002/(ISSN)1547-5905
  • Olujić, Ž. (2007) DISTILLATION | Packed Columns: High Capacity Internals A2 - Wilson, Ian D Encyclopedia of Separation Science; Academic Press: Oxford.
  • Haroun, Y.; Legendre, D.; Raynal, L. (2010) Direct numerical simulation of reactive absorption in gas–liquid flow on structured packing using interface capturing method. Chemical Engineering Science, 65 (1): 351–356. doi:10.1016/j.ces.2009.07.018
  • Raynal, L.; Ballaguet, J.P.; Barrere-Tricca, C. (2004) Determination of mass transfer characteristics of co-current two-phase flow within structured packing. Chemical Engineering Science, 59 (22–23): 5395–5402. doi:10.1016/j.ces.2004.07.030
  • Olujic, Z.; Jansen, H.; Kaibel, B.; Rietfort, T.; Zich, E. (2001) Stretching the capacity of structured packings. Industrial and Engineering Chemistry Research, 40 (26): 6172–6180. doi:10.1021/ie010323j
  • Fair, J.R.; Seibert, A.F.; Behrens, M.; Saraber, P.P.; Olujic, Z. (2000) Structured packing performance - Experimental evaluation of two predictive models. Industrial and Engineering Chemistry Research, 39 (6): 1788–1796. doi:10.1021/ie990910t
  • Verschoof, H.J.; Olujic, Z.; Fair, J.R. (1999) A general correlation for predicting the loading point of corrugated sheet structured packings. Industrial and Engineering Chemistry Research, 38 (10): 3663–3669. doi:10.1021/ie990009d
  • Aroonwilas, A.; Chakma, A.; Tontiwachwuthikul, P.; Veawab, A. (2003) Mathematical modelling of mass-transfer and hydrodynamics in CO2 absorbers packed with structured packings. Chemical Engineering Science, 58 (17): 4037–4053. doi:10.1016/S0009-2509(03)00315-4
  • Hoffmann, A.; Ausner, I.; Repke, J.-U.; Wozny, G. (2005) Fluid dynamics in multiphase distillation processes in packed towers. Computers & Chemical Engineering, 29 (6): 1433–1437. doi:10.1016/j.compchemeng.2005.02.004
  • Raynal, L.; Royon-Lebeaud, A. (2007) A multi-scale approach for CFD calculations of gas–liquid flow within large size column equipped with structured packing. Chemical Engineering Science, 62 (24): 7196–7204. doi:10.1016/j.ces.2007.08.010
  • Suess, P.; Spiegel, L. (1992) Hold-up of mellapak structured packings. Chemical Engineering and Processing: Process Intensification, 31 (2): 119–124. doi:10.1016/0255-2701(92)85005-M
  • Poortalari, H.; Sabet, J.K.; Varaminian, F. (2017) 500Efficiency-based nonequilibrium modeling ofindustrial-scale multicomponent distillation columns.Separation Science and Technology, 52 (11):1885–1900. doi:10.1080/01496395.2017.1301471
  • Ellenberger, J.; Krishna, R. (1999) Counter-current operation of structured catalytically packed distillation columns: pressure drop, holdup and mixing. Chemical Engineering Science, 54 (10): 1339–1345. doi:10.1016/S0009-2509(99)00055-X
  • Muzen, A.; Cassanello, M.C. (2005) Liquid holdup in columns packed with structured packings: countercurrent vs. cocurrent operation. Chemical Engineering Science, 60 (22): 6226–6234. doi:10.1016/j.ces.2005.05.013
  • Ratheesh, S.; Kannan, A. (2004) Holdup and pressure drop studies in structured packings with catalysts. Chemical Engineering Journal, 104 (1–3): 45–54. doi:10.1016/j.cej.2004.08.004
  • Gu, F.; Liu, C.J.; Yuan, X.G.; Yu, G.C. (2004) CFD simulation of liquid film flow on inclined plates. Chemical Engineering and Technology, 27 (10): 1099–1104. doi:10.1002/ceat.200402018
  • Haroun, Y.; Raynal, L.; Alix, P. (2014) Prediction of effective area and liquid hold-up in structured packings by CFD. Chemical Engineering Research and Design, 92 (11): 2247–2254. doi:10.1016/j.cherd.2013.12.029
  • Owens, S.A.; Perkins, M.R.; Eldridge, R.B.; Schulz, K.W.; Ketcham, R.A. (2013) Computational fluid dynamics simulation of structured packing. Industrial and Engineering Chemistry Research, 52 (5): 2032–2045. doi:10.1021/ie3016889
  • Bender, P.; Moll, A. (2003) Modifications to structured packings to increase their capacity. Chemical Engineering Research and Design, 81 (1): 58–67. doi:10.1205/026387603321158195
  • Billingham, J.F.; Lockett, M.J. (1999) Development of a new generation of structured packings for distillation. Chemical Engineering Research and Design, 77 (7): 583–587. doi:10.1205/026387699526610
  • Amini, Y., J. Karimi Sabet, and M. Nasr Esfahany. “The Effectof Angle Packings on the Wet Pressure Drop:Experimental Study.” Chemical Engineering Letters: Modeling, Simulation and Control 1.2 (2018).
  • Dai, C.; Lei, Z.; Li, Q.; Chen, B. (2012) Pressure drop and mass transfer study in structured catalytic packings. Separation and Purification Technology, 98: 78–87. doi:10.1016/j.seppur.2012.06.035
  • Y. Amini, J. Karimi-Sabet, M. Nasr Esfahany, M. Haghshenasfard, A. Dastbaz, Experimental and Numerical Study of Mass Transfer Efficiency in New Wire Gauze with High Capacity Structured Packing, Separation Sciences and Technology, DOI: 10.1080/01496395.2018.1549076.
  • Amini, Y.; Karimi‐Sabet, J.; Esfahany, M.N. (2016) Experimental and numerical simulation of dry pressure drop in high‐capacity structured packings. Chemical Engineering & Technology, 39 (6): 1161–1170. doi:10.1002/ceat.201500477
  • Wen, X.; Akhter, S.; Afacan, A.; Nandakumar, K.; Chuang, K.T. (2007) CFD modeling of columns equipped with structured packings: I. Approach based on detailed packing geometry. Asia-Pacific Journal of Chemical Engineering, 2 (4): 336–344. doi:10.1002/(ISSN)1932-2143
  • Said, W.; Nemer, M.; Clodic, D. (2011) Modeling of dry pressure drop for fully developed gas flow in structured packing using CFD simulations. Chemical Engineering Science, 66 (10): 2107–2117. doi:10.1016/j.ces.2011.02.011
  • Amini, Y.; Karimi-Sabet, J.; Nasr Esfahany, M. (2016) Experimental and numerical study of multiphase flow in new wire gauze with high capacity structured packing. Chemical Engineering and Processing: Process Intensification, 108: 35–43. doi:10.1016/j.cep.2016.07.003
  • Haghshenas Fard, M.; Zivdar, M.; Rahimi, R.; Esfahany, M.N.; Afacan, A.; Nandakumar, K.; Chuang, K.T. (2007) CFD simulation of mass transfer efficiency and pressure drop in a structured packed distillation column. Chemical Engineering and Technology, 30 (7): 854–861. doi:10.1002/ceat.200700011
  • Mahr, B.; Mewes, D. (2007) CFD modelling and calculation of dynamic two-phase flow in columns equipped with structured packing. Chemical Engineering Research and Design, 85 (8): 1112–1122. doi:10.1205/cherd06117
  • Singh, R.K.; Galvin, J.E.; Sun, X. (2018) Multiphase flow studies for microscale hydrodynamics in the structured packed column. Chemical Engineering Journal, 353: 949–963. doi:10.1016/j.cej.2018.07.067
  • Lu, X.; Xie, P.; Ingham, D.B.; Ma, L.; Pourkashanian, M. (2018) A porous media model for CFD simulations of gas-liquid two-phase flow in rotating packed beds. Chemical Engineering Science, 189: 123–134. doi:10.1016/j.ces.2018.04.074
  • Qi, W.; Guo, K.; Liu, C.; Liu, H.; Liu, B. (2017) Liquid distribution and local hydrodynamics of winpak: a multiscale method. Industrial & Engineering Chemistry Research, 56 (51): 15184–15194. doi:10.1021/acs.iecr.7b04194
  • Olenberg, A.; Reschetnik, W.; Kullmer, G.; Kenig, E.Y. (2018) Optimization of structured packings using twisted tape inserts. Chemical Engineering Research and Design, 132: 1–8. doi:10.1016/j.cherd.2017.12.036
  • Guo, Y.-Q.; Hong, W.-R.; Repke, J.-U. (2018) Hydrodynamics of new structured packings: an experimental and micro-scale CFD study. Microgravity Science and Technology. doi:10.1007/s12217-018-9648-z
  • Moradi, R.; Mahyari, A.; Barzegar Gerdroodbary, M.; Abdollahi, A.; Amini, Y. (2018) Shape effect of cavity flameholder on mixing zone of hydrogen jet at supersonic flow. International Journal of Hydrogen Energy, 43 (33): 16364–16372. doi:10.1016/j.ijhydene.2018.06.166
  • Moradi, R.; Mosavat, M.; Barzegar Gerdroodbary, M.; Abdollahi, A.; Amini, Y. (2018) The influence of coolant jet direction on heat reduction on the nose cone with Aerodome at supersonic flow. Acta astronautica, 151: 487–493. doi:10.1016/j.actaastro.2018.06.026
  • Gerdroodbary, M.B.; Amini, Y.; Ganji, D.; Takam, M.R. (2017) The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow. Advances in Space Research, 59 (5): 1330–1340. doi:10.1016/j.asr.2016.11.040
  • Anazadehsayed, A.; Gerdroodbary, M.B.; Amini, Y.; Moradi, R. (2017) Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow. Acta astronautica, 137: 403–414. doi:10.1016/j.actaastro.2017.05.007
  • Barzegar Gerdroodbary, M.; Ganji, D.D.; Amini, Y. (2015) Numerical study of shock wave interaction on transverse jets through multiport injector arrays in supersonic crossflow. Acta astronautica, 115: 422–433. doi:10.1016/j.actaastro.2015.06.002
  • Hashemipour, N.; Karimi-Sabet, J.; Motahari, K.; Mahruz Monfared, S.; Amini, Y.; Moosavian, M.A. (2018) Experimental and simulation investigation on separation of binary hydrocarbon mixture by thermogravitational column. Journal of Molecular Liquids, 268: 791–806. doi:10.1016/j.molliq.2018.07.098
  • Amini, Y.; Mokhtari, M.; Haghshenasfard, M.; Barzegar Gerdroodbary, M. (2015) Heat transfer of swirling impinging jets ejected from Nozzles with twisted tapes utilizing CFD technique. Case Studies in Thermal Engineering, 6: 104–115. doi:10.1016/j.csite.2015.08.001
  • Hashemipour, N.; Karimi-Sabet, J.; Motahari, K.; Monfared, S.M.; Amini, Y.; Moosavian, M.A. (2018) Numerical study of n-heptane/benzene separation by thermal diffusion column. Chinese Journal of Chemical Engineering. doi:10.1016/j.cjche.2018.10.004
  • Ahuja, G.N.; Patwardhan, A.W. (2008) CFD and experimental studies of solids hold-up distribution and circulation patterns in gas–solid fluidized beds. Chemical Engineering Journal, 143 (1–3): 147–160. doi:10.1016/j.cej.2008.03.011
  • Roy, S.; Dhotre, M.T.; Joshi, J.B. (2006) CFD simulation of flow and axial dispersion in external loop airlift reactor. Chemical Engineering Research and Design, 84 (8): 677–690. doi:10.1205/cherd.05178
  • Sun, B.; He, L.; Liu, B.; Gu, F.; Liu, C. (2013) A new multi‐scale model based on CFD and macroscopic calculation for corrugated structured packing column. AIChE Journal, 59 (8): 3119–3130. doi:10.1002/aic.14082
  • Huang, J.; Li, M.; Sun, Z.; Gong, M.; Wu, J. (2015) Hydrodynamics of layered wire gauze packing. Industrial and Engineering Chemistry Research, 54 (17): 4871–4878. doi:10.1021/ie504689s
  • Lautenschleger, A.; Olenberg, A.; Kenig, E.Y. (2015) A systematic CFD-based method to investigate and optimise novel structured packings. Chemical Engineering Science, 122: 452–464. doi:10.1016/j.ces.2014.09.040
  • Karbasi, E.; Karimi-Sabet, J.; Mohammadi-Rovshandeh, J.; Moosavian, M.A.; Ahadi, H.; Amini, Y. (2017) Experimental and numerical study of air-gap membrane distillation (AGMD): novel AGMD module for Oxygen-18 stable isotope enrichment. Chemical Engineering Journal, 322: 667–678. doi:10.1016/j.cej.2017.03.031
  • Jahromi, P.F.; Karimi-Sabet, J.; Amini, Y.; Fadaei, H. (2017) Pressure-driven liquid-liquid separation in Y-shaped microfluidic junctions. Chemical Engineering Journal, 328: 1075–1086. doi:10.1016/j.cej.2017.07.096
  • Chen, J.; Liu, C.; Yuan, X.; Yu, G. (2009) CFD simulation of flow and mass transfer in structured packing distillation columns. Chinese Journal of Chemical Engineering, 17 (3): 381–388. doi:10.1016/S1004-9541(08)60220-7
  • Fernandes, J.; Lisboa, P.F.; Simões, P.C.; Mota, J.P.B.; Saatdjian, E. (2009) Application of CFD in the study of supercritical fluid extraction with structured packing: wet pressure drop calculations. The Journal of Supercritical Fluids, 50 (1): 61–68. doi:10.1016/j.supflu.2009.04.009
  • Khan, M.J.H.; Hussain, M.A.; Mansourpour, Z.; Mostoufi, N.; Ghasem, N.M.; Abdullah, E.C. (2014) CFD simulation of fluidized bed reactors for polyolefin production – A review. Journal of Industrial and Engineering Chemistry, 20 (6): 3919–3946. doi:10.1016/j.jiec.2014.01.044
  • Wang, H.; Lungu, M.; Huang, Z.; Wang, J.; Yang, Y.; Yang, Y. (2018) CFD simulation of electrostatic effect on gas interchange, vortex and heat transfer in the gas-solid fluidized bed. Advanced Powder Technology, 29 (7): 1617–1631. doi:10.1016/j.apt.2018.03.026
  •  
  • Lungu, M.; Wang, H.; Mwandila, G.; Wang, J.; Yang, Y.; Chen, F.; Siame, J. (2018) Effect of bed thickness on a pseudo 2D gas-solid fluidized bed turbulent flow structures and dynamics. Powder Technology. doi:10.1016/j.powtec.2018.06.028
  • Haghshenasfard, M.; Zivdar, M.; Rahimi, R.; Nasr Esfahany, M. (2007) CFD simulation of gas distribution performance of gas inlet systems in packed columns. Chemical Engineering and Technology, 30 (9): 1176–1180. doi:10.1002/ceat.200700102
  • Asendrych, D.; Niegodajew, P.; Drobniak, S. (2013) CFD modelling of CO2 capture in a packed bed by chemical absorption. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 34 (2): 269–282.
  • Bhuiya, M.M.K.; Chowdhury, M.S.U.; Islam, M.; Ahamed, J.U.; Khan, M.J.H.; Sarker, M.R.I.; Saha, M. (2012) Heat transfer performance evaluation for turbulent flow through a tube with twisted wire brush inserts. International Communications in Heat and Mass Transfer, 39 (10): 1505–1512. doi:10.1016/j.icheatmasstransfer.2012.10.005
  • Bhuiya, M.M.K.; Chowdhury, M.S.U.; Ahamed, J.U.; Khan, M.J.H.; Sarkar, M.A.R.; Kalam, M.A.; Masjuki, H.H.; Shahabuddin, M. (2012) Heat transfer performance for turbulent flow through a tube using double helical tape inserts. International Communications in Heat and Mass Transfer, 39 (6): 818–825. doi:10.1016/j.icheatmasstransfer.2012.04.006
  • Olujic, Z.; Roelofse, A.; Stoter, F.; de Graauw, J. (1997) LDESP: A simulation and optimization environment for structured packings. Institution of Chemical Engineers Symposium Series, 142 949–960.
  • Olujić, Ž. (1999) Effect of column diameter on pressure drop of a corrugated sheet structured packing. Chemical Engineering Research and Design, 77 (6): 505–510. doi:10.1205/026387699526539
  • Petre, C.F.; Larachi, F.; Iliuta, I.; Grandjean, B.P.A. (2003) Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modeling. Chemical Engineering Science, 58 (1): 163–177. doi:10.1016/S0009-2509(02)00473-6
  • Larachi, F.Ç.; Petre, C.F.; Iliuta, I.; Grandjean, B. (2003) Tailoring the pressure drop of structured packings through CFD simulations. Chemical Engineering and Processing: Process Intensification, 42 (7): 535–541. doi:10.1016/S0255-2701(02)00073-9
  • Billet, R.; Schultes, M. (1993) Predicting mass transfer in packed columns. Chemical Engineering & Technology, 16 (1): 1–9. doi:10.1002/ceat.270160102
  • Amini, Y.; Karimi-Sabet, J.; Esfahany, M.N. (2017) Characterization of new wire gauze high‐capacity structured packing with varied inclination angle. Chemical Engineering & Technology, 40 (3): 581–587. doi:10.1002/ceat.201600351
  • Amini, Y.; Karimi‐Sabet, J.; Nasr Esfahany, M. (2017) Experimental characterization of new wire gauze with high capacity structured packing. The Canadian Journal of Chemical Engineering, 95 (3): 535–542. doi:10.1002/cjce.v95.3
  • Egorov, Y.; Menter, F.; Klöker, M.; Kenig, E.Y. (2005) On the combination of CFD and rate-based modelling in the simulation of reactive separation processes. Chemical Engineering and Processing: Process Intensification, 44 (6): 631–644. doi:10.1016/j.cep.2003.10.011
  • Subramanian, K.; Wozny, G. (2012) Analysis of Hydrodynamics of Fluid Flow on Corrugated Sheets of Packing. International Journal of Chemical Engineering, 2012: 1–13. doi:10.1155/2012/838965
  • Sun, B.; Zhu, M.; Liu, B.T.; Liu, C.J.; Yuan, X.G. (2013) Investigation of falling liquid film flow on novel structured packing. Industrial and Engineering Chemistry Research, 52 (13): 4950–4956. doi:10.1021/ie302272s
  • Ranade, V.V. (2002) Computational flow modeling for chemical reactor engineering, Vivek, V.R.; (editor) Process Systems Engineering; Academic Press: San Diego, California, USA
  • Jafari, A.; Zamankhan, P.; Mousavi, S.M.; Pietarinen, K. (2008) Modeling and CFD simulation of flow behavior and dispersivity through randomly packed bed reactors. Chemical Engineering Journal, 144 (3): 476–482. doi:10.1016/j.cej.2008.07.033
  • Fernandes, J.; Simões, P.C.; Mota, J.P.B.; Saatdjian, E. (2008) Application of CFD in the study of supercritical fluid extraction with structured packing: dry pressure drop calculations. The Journal of Supercritical Fluids, 47 (1): 17–24. doi:10.1016/j.supflu.2008.07.008
  • Rafati Saleh, A.; Hosseini, S.H.; Shojaee, S.; Ahmadi, G. (2011) CFD studies of pressure drop and increasing capacity in MellapakPlus 752.Y structured packing. Chemical Engineering and Technology, 34 (9): 1402–1412. doi:10.1002/ceat.201000557
  • Shojaee, S.; Hosseini, S.H.; Razavi, B.S. (2012) Computational fluid dynamics simulation of multiphase flow in structured packings. Journal of Applied Mathematics. doi:10.1155/2012/917650
  • Li, H.L.; Ju, Y.L.; Li, L.J.; Xu, D.G. (2012) Computational fluid dynamics simulation of 13CO distillation in structured packing. Chemical Engineering and Technology, 35 (2): 334–340. doi:10.1002/ceat.201100273
  • Li, X.; Gao, G.; Zhang, L.; Sui, H.; Li, H.; Gao, X.; Yang, Z.; Tian, C.; Zhang, J. (2012) Multiscale simulation and experimental study of novel SiC structured packings. Industrial and Engineering Chemistry Research, 51 (2): 915–924. doi:10.1021/ie200796p
  • Raynal, L.; Ben Rayana, F.; Royon-Lebeaud, A. (2009) Use of CFD for CO2 absorbers optimum design: from local scale to large industrial scale. Energy Procedia, 1 (1): 917–924.
  • Calis, H.P.A.; Nijenhuis, J.; Paikert, B.C.; Dautzenberg, F.M.; van Den Bleek, C.M. (2001) CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. Chemical Engineering Science, 56 (4): 1713–1720. doi:10.1016/S0009-2509(00)00400-0
  • Shojaee, S.; Hosseini, S.H.; Rafati, A.; Ahmadi, G. (2011) Prediction of the effective area in structured packings by computational fluid dynamics. Industrial and Engineering Chemistry Research, 50 (18): 10833–10842. doi:10.1021/ie200088d
  • Khosravi Nikou, M.R.; Ehsani, M.R. (2008) Turbulence models application on CFD simulation of hydrodynamics, heat and mass transfer in a structured packing. International Communications in Heat and Mass Transfer, 35 (9): 1211–1219. doi:10.1016/j.icheatmasstransfer.2008.05.017
  • Klöker, M.; Kenig, E.Y.; Piechota, R.; Burghoff, S.; Egorov, Y. (2005) CFD-based study on hydrodynamics and mass transfer in fixed catalyst beds. Chemical Engineering and Technology, 28 (1): 31–36. doi:10.1002/ceat.200407048
  • Haroun, Y.; Legendre, D.; Raynal, L. (2010) Volume of fluid method for interfacial reactive mass transfer: application to stable liquid film. Chemical Engineering Science, 65 (10): 2896–2909. doi:10.1016/j.ces.2010.01.012
  • Yuan, Y.; Han, M.; Cheng, Y.; Wang, D.; Jin, Y. (2005) Experimental and CFD analysis of two-phase cross/countercurrent flow in the packed column with a novel internal. Chemical Engineering Science, 60 (22): 6210–6216. doi:10.1016/j.ces.2005.03.047
  • Iliuta, I.; Grandjean, B.P.A.; Piché, S.; Larachi, F.Ç. (2003) Two-fluid model for counter-current dumped packing-containing columns. Chemical Engineering Science, 58 (7): 1373–1380. doi:10.1016/S0009-2509(02)00652-8
  • Iliuta, I.; Petre, C.F.; Larachi, F. (2004) Hydrodynamic continuum model for two-phase flow structured-packing-containing columns. Chemical Engineering Science, 59 (4): 879–888. doi:10.1016/j.ces.2003.11.020
  • Sebastia-Saez, D.; Gu, S.; Ranganathan, P.; Papadikis, K. (2015) Meso-scale CFD study of the pressure drop, liquid hold-up, interfacial area and mass transfer in structured packing materials. International Journal of Greenhouse Gas Control, 42: 388–399. doi:10.1016/j.ijggc.2015.08.016
  • Sebastia-Saez, D.; Gu, S.; Ranganathan, P.; Papadikis, K. (2014) Micro-scale CFD study about the influence of operative parameters on physical mass transfer within structured packing elements. International Journal of Greenhouse Gas Control, 28: 180–188. doi:10.1016/j.ijggc.2014.06.029
  • Ding, H.; Li, J.; Xiang, W.; Liu, C. (2015) CFD simulation and optimization of Winpak-based modular catalytic structured packing. Industrial & Engineering Chemistry Research, 54 (8): 2391–2403. doi:10.1021/ie503998v
  • Liu, B.; Wen, Y.; Liu, C.; Sun, B.; Yuan, X. (2016) Multiscale calculation on perforated sheet structured packing to predict the liquid distribution based on computational fluid dynamics simulation. Industrial & Engineering Chemistry Research, 55 (28): 7810–7818. doi:10.1021/acs.iecr.5b05003
  • Hosseini, S.H.; Shojaee, S.; Ahmadi, G.; Zivdar, M. (2012) Computational fluid dynamics studies of dry and wet pressure drops in structured packings. Journal of Industrial and Engineering Chemistry, 18 (4): 1465–1473. doi:10.1016/j.jiec.2012.02.012
  • Olujić, Ž. (1997) Development of a complete simulation model for predicting the hydraulic and separation performance of distillation columns equipped with structured packings. Chemical and Biochemical Engineering Quarterly, 11 (1): 31–46.
  • Iliuta, I.; Larachi, F. (2001) Mechanistic model for structured-packing-containing columns: irrigated pressure drop, liquid holdup, and packing fractional wetted area. Industrial and Engineering Chemistry Research, 40 (23): 5140–5146. doi:10.1021/ie001032y
  • Bravo, J.L.; Fair, J.R. (1982) GENERALIZED CORRELATION FOR MASS TRANSFER IN PACKED DISTILLATION COLUMNS. Industrial & Engineering Chemistry, Process Design and Development, 21 (1): 162–170. doi:10.1021/i200016a028
  • De Brito, M.H.; Von Stockar, U.; Bangerter, A.M.; Bomio, P.; Laso, M. (1994) Effective mass-transfer area in a pilot plant column equipped with structured packings and with ceramic rings. Industrial & Engineering Chemistry Research, 33 (3): 647–656. doi:10.1021/ie00027a023
  • Raynal, L.; Boyer, C.; Ballaguet, J.P. (2004) Liquid holdup and pressure drop determination in structured packing with CFD simulations. Canadian Journal of Chemical Engineering, 82 (5): 871–879. doi:10.1002/cjce.5450820502
  • Ataki, A.; Bart, H.J. (2006) Experimental and CFD simulation study for the wetting of a structured packing element with liquids. Chemical Engineering and Technology, 29 (3): 336–347. doi:10.1002/ceat.200500302
  • Szulczewska, B.; Zbicinski, I.; Górak, A. (2003) Liquid flow on structured packing: CFD simulation and experimental study. Chemical Engineering and Technology, 26 (5): 580–584. doi:10.1002/ceat.200390089
  • Gao, G.; Zhang, L.; Li, X.; Sui, H. (2011) CFD simulation of film flow and gas/liquid counter-current flow on structured packing. Transactions of Tianjin University, 17 (3): 194–198. doi:10.1007/s12209-011-1560-1
  • Pham, D.A.; Lim, Y.I.; Jee, H.; Ahn, E.; Jung, Y. (2015) Effect of ship tilting and motion on amine absorber with structured‐packing for CO2 removal from natural gas. AIChE Journal, 61 (12): 4412–4425. doi:10.1002/aic.14962
  • Kim, J.; Pham, D.A.; Lim, Y.-I. (2016) Gas− liquid multiphase computational fluid dynamics (CFD) of amine absorption column with structured-packing for CO 2 capture. Computers & Chemical Engineering, 88: 39–49. doi:10.1016/j.compchemeng.2016.02.006
  • Pham, D.A.; Lim, Y.-I.; Jee, H.; Ahn, E.; Jung, Y. (2015) Porous media Eulerian computational fluid dynamics (CFD) model of amine absorber with structured-packing for CO 2 removal. Chemical Engineering Science, 132: 259–270. doi:10.1016/j.ces.2015.04.009
  • Liu, G.B.; Yu, K.T.; Yuan, X.G.; Liu, C.J. (2009) A numerical method for predicting the performance of a randomly packed distillation column. International Journal of Heat and Mass Transfer, 52 (23–24): 5330–5338. doi:10.1016/j.ijheatmasstransfer.2009.06.038
  • Yin, F.H.; Sun, C.G.; Afacan, A.; Nandakumar, K.; Chuang, K.T. (2000) CFD modeling of mass-transfer processes in randomly packed distillation columns. Industrial and Engineering Chemistry Research, 39 (5): 1369–1380.
  • Hassanvand, A.; Hashemabadi, S.H.; Bayat, M. (2010) Evaluation of gasoline evaporation during the tank splash loading by CFD techniques. International Communications in Heat and Mass Transfer, 37 (7): 907–913. doi:10.1016/j.icheatmasstransfer.2010.05.011
  • Hassanvand, A.; Hashemabadi, S.H. (2011) Direct numerical simulation of interphase mass transfer in gas–liquid multiphase systems. International Communications in Heat and Mass Transfer, 38 (7): 943–950. doi:10.1016/j.icheatmasstransfer.2011.05.014
  • Dong, B.; Yuan, X.; Yu, K. (2017) Determination of liquid mass-transfer coefficients for the absorption of CO2 in alkaline aqueous solutions in structured packing using numerical simulations. Chemical Engineering Research and Design, 124: 238–251. doi:10.1016/j.cherd.2017.06.017
  • Khan, M.; Hussain, M.; Mujtaba, I. (2016) Developed hybrid model for propylene polymerisation at optimum reaction conditions. Polymers, 8 (2): 47. doi:10.3390/polym8020047
  • Jakir Hossain Khan, M.; Azlan Hussain, M.; Mujtaba, I.M. (2016) Multiphasic reaction modeling for polypropylene production in a pilot-scale catalytic reactor. Polymers, 8 (6): 220. doi:10.3390/polym8060220
  • Haelssig, J.B.; Tremblay, A.Y.; Thibault, J.; Etemad, S.G. (2010) Direct numerical simulation of interphase heat and mass transfer in multicomponent vapour–liquid flows. International Journal of Heat and Mass Transfer, 53 (19–20): 3947–3960. doi:10.1016/j.ijheatmasstransfer.2010.05.013
  • Hassanvand, A.; Hashemabadi, S.H. (2012) Direct numerical simulation of mass transfer from Taylor bubble flow through a circular capillary. International Journal of Heat and Mass Transfer, 55 (21–22): 5959–5971. doi:10.1016/j.ijheatmasstransfer.2012.06.006
  • Lappalainen, K.; Manninen, M.; Alopaeus, V. (2009) CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion. Chemical Engineering Science, 64 (2): 207–218. doi:10.1016/j.ces.2008.10.009
  • Lappalainen, K.; Gorshkova, E.; Manninen, M.; Alopaeus, V. (2011) Characteristics of liquid and tracer dispersion in trickle-bed reactors: effect on CFD modeling and experimental analyses. Computers & Chemical Engineering, 35 (1): 41–49. doi:10.1016/j.compchemeng.2010.06.006
  • van Baten, J.M.; Krishna, R. (2002) Gas and liquid phase mass transfer within KATAPAK-S® structures studied using CFD simulations. Chemical Engineering Science, 57 (9): 1531–1536. doi:10.1016/S0009-2509(02)00026-X
  • Viva, A.; Aferka, S.; Toye, D.; Marchot, P.; Crine, M.; Brunazzi, E. (2011) Determination of liquid hold-up and flow distribution inside modular catalytic structured packings. Chemical Engineering Research and Design, 89 (8): 1414–1426. doi:10.1016/j.cherd.2011.02.009
  • Rocha, J.A.; Bravo, J.L.; Fair, J.R. (1996) Distillation columns containing structured packings: A comprehensive model for their performance. 2. Mass-transfer model. Industrial and Engineering Chemistry Research, 35 (5): 1660–1667. doi:10.1021/ie940406i
  • Bravo, J.L.; Rocha, J.A.; Fair, J.R. (1985) MASS TRANSFER IN GAUZE PACKINGS. Hydrocarbon Processing, 64 (1): 91–95.
  • Fair, J.R.; Bravo, J.L. (1990) Distillation columns containing structured packing. Chemical Engineering Progress, 86 (1): 19–29.
  • van Baten, J.M.; Ellenberger, J.; Krishna, R. (2001) Radial and axial dispersion of the liquid phase within a KATAPAK-S® structure: experiments vs. CFD simulations. Chemical Engineering Science, 56 (3): 813–821. doi:10.1016/S0009-2509(00)00293-1
  • Sebastia-Saez, D.; Gu, S.; Ranganathana, P.; Papadikis, K. (2013) 3d modeling of hydrodynamics and physical mass transfer characteristics of liquid film flows in structured packing elements. International Journal of Greenhouse Gas Control, 19: 492–502. doi:10.1016/j.ijggc.2013.10.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.