138
Views
1
CrossRef citations to date
0
Altmetric
Articles

Experimental and Kinetic studies on the combined influence of ultrasonication and rare earths on removal of azo dyes

ORCID Icon, ORCID Icon &
Pages 1632-1649 | Received 06 Jun 2018, Accepted 14 Nov 2018, Published online: 31 Jan 2019

References

  • Srivastava, P.; Goyal, S.; Prem Kishore, P. (2014) Degradation of reactive, acid and basic textile dyes in the presence of ultrasound and rare earths[Lanthanum and Praseodymium]. Ultrasonics Sonochemistry, 21 (6): 1994–2009. doi:10.1016/j.ultsonch.2014.01.016.
  • Crini, G.; Gimbert, F.; Robert, C.; Martel, B.; Adam, O.; Morin Crini, N.; De Giorgi, F.; Marie Badot, P. (2008) The removal of basic blue 3 from aqueous solutions by chitosan based adsorbent: batch studies. Journal of Hazardous Materials, 153 (1–2): 96–106. doi:10.1016/j.jhazmat.2007.08.025.
  • Shirzad Siboni, M.; Farrokhi, M.; Soltani, R.D.C.; Khataee, A.; Tajassosi, S. (2014) Photocatalytic reduction of hexavalent chromium over ZnO nanorods immobilized on kaolin. Industrial & Engineering Chemistry Research, 53 (3): 1079–1087. doi:10.1021/ie4032583.
  • Teng Ong, S.; Cheong Khoo, E.; Ling Hii, S.; Tiong Ha, S. (2010) Utilization of sugarcane bagasse for removal of basic dyes from aqueous environment in single and binary systems. Desalination and Water Treatment, 20 (1–3): 86–95. doi:10.1080/19443994.2010.10513772.
  • Eren, Z.; Acar, F.N. (2006) Adsorption of reactive black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination, 194: 1–10. doi:10.1016/j.desal.2005.10.022.
  • Yuh-Shan, H.;. (2004) Pseudo-Isotherms using a second order kinetic expression constant. Adsorption, 10 (2): 151–158. doi:10.1023/B:ADSO.0000039870.28835.09.
  • Teng Ong, S.; Yen Tan, S.; Cheong Khoo, E.; Ling Lee, S.; Tiong Ha, S. (2015) Equilibrium studies for basic blue 3 adsorption onto durian peel (Durio zibethinus Murray). Desalination and Water Treatment, 45 (1–3): 161–169. doi:10.1080/19443994.2012.692037.
  • Carneiro, P.A.; Umbuzeiro, G.A.; Oliveria, D.P.; Valnice B Zanoni, M. (2010) Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperse dyes. Journal of Hazardous Materials, 174 (1–3): 694–699. doi:10.1016/j.jhazmat.2009.09.106.
  • Wei Liew, S.; Teng Ong, S. (2014) Removal of basic blue 3 dye using pomelo peel. Asian Journal of Chemical, 26 (13): 3808–3814.
  • Vinayak, V.P.; Richa, K.; Chopra, A.K.; Singh, D.P. (2015) Experimental and Kinetic studies for phycoremediation and dye removal by chlorella pyrenoidosa from textile. Journal of Environmental Management, 163: 270–277. doi:10.1016/j.jenvman.2015.08.041.
  • Wang, K.S.; Chen, H.Y.; Huang, L.C.; Su, Y.C.; Chang, S.H. (2008) Degradation of reactive black 5 using combined electrochemical degradation solar light/immobilized TiO2 film process and toxicity evaluation. Chemosphere, 72 (2): 299–305. doi:10.1016/j.chemosphere.2008.02.012.
  • Mook, W.T.; Aroua, M.K.; Szlachta, M. (2016) Palm shell based activated carbon for removing reactive black 5 dye: equilibrium and kinetic studies. BioRes, 11 (1): 1432–1447.
  • Poon, C.S.; Huang, Q.; Fung, P.C. (1999) Degradation kinetics of cuprophenyl yellow RL by UV/H2O2/ultrasonication (US) process in aqueous solution. Chemosphere, 38 (5): 1005–1014. doi:10.1016/S0045-6535(98)00350-6.
  • Karadag, D.; Turan, M.; Akgul, E.; Tok, S.; Faki, A. (2007) Adsorption equilibrium and kinetics of reactive black 5 and reactive red 239in aqueous solution onto surfactant-modified zeolite. Journal of Chemical and Engineering Data, 52 (5): 1615–1620. doi:10.1021/je7000057.
  • Daneshvar, N.; Ashassi-Sorkhabi, H.; Tizpar, A. (2003) Decolorization of Orange II by electrocoagulation method. Separation and Purification Technology, 129 (2): 116–122.
  • Wong, S.Y.; Tan, Y.P.; Abdullah, A.H.; Ong, S.T. (2009) The removal of basic and reactive dyes using quartenised sugar cane bagasse. Journal of Physical Science, 20 (1): 59–74.
  • Afsharnia, M.; Biglari, H.; Javid, A.; Zabihi, F. (2017) Removal of reactive black 5 dye from aqueous solutions by adsorption onto activated carbon of grape seed. Iranian Journal of Health Sciences, 5 (4): 48–61. doi:10.29252/jhs.5.4.48.
  • Samadi, T.M.; Zolghadrnasab, H.; Godini, K.; Poormohamadi, A.; Ahmadian, M.; Shanesaz, S. (2015) Kinetics and adsorption studies of reactive black 5 removal using multiwalled carbon nanotubes from aqueous solution. Der Pharma Chemical, 7 (5): 267–274.
  • Tasar, S.; Kaya, F.; Ozer, A. (2017) Adsorption of CI. Basic blue 3 dye molecules from aqueous media by sulphuric acid activated montmorillonite mineral. JOTCSB, 1 (1): 16.
  • Ong, S.T.; Lee, C.K.; Zainal, Z. (2007) Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresource Technology, 98: 2792–2799. doi:10.1016/j.biortech.2006.05.011.
  • Kalkam, E.; Nadaroglu, H.; Celebi, N.; Tozsin, G. (2014) Removal of textile dye reactive black 5 from aqueous solution by adsorption on laccase-modified silica fume. Desalination and Water Treatment, 52 (31–33): 6122–6134. doi:10.1080/19443994.2013.811114.
  • Karakus, S.; Sismanoglu, S.; Akdut, G.; Urk, O.; Tan, E.; Sismanoglu, T.; Kilislioglu, A. (2017) Removal of basic blue 3 from the aqueous solution with ternary polymer nanocomposite: swelling,kinetics,isotherms and error function. The Journal of the Chemical Society of Pakistan, 39 (1): 17–25.
  • Srivastava, P.; Goyal, S.; Tayade, R. (2013) Ultrasound assisted adsorption of reactive blue 21 dye on TiO2 in the presence of some rare earths (La, Ce, Pr & Gd). The Canadian Journal of Chemical Engineering, 92 (1): 41–51. doi:10.1002/cjce.21799.
  • Sauer, T.; Neto, G.C.; Jose, H.J.; Moreira, R.F.P.M. (2002) Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A, 149 (1–3): 147–154. doi:10.1016/S1010-6030(02)00015-1.
  • Shaheed, M.A.; Hussein, H.F. (2014) Adsorption of reactive black 5 on synthesized titanium dioxide nanoparticles: equilibrium isotherm and kinetic studies. Journal of Nanomaterials, 2014: 1–12. doi:10.1155/2014/198561.
  • Mohammed Saeed, W.F.;. (2013) Removal of azo dye reactive black 5 by adsorption on ZnO and CaO. Journal of Kerbala University, 11 (4): 321–330.
  • Banat, I.M.; Nigam, P.; Singh, D.; Marchant, R. (1996) Microbial decolorization of textile dyes containing effluents: a review. Bioresource Technology, 58 (3): 217–227. doi:10.1016/S0960-8524(96)00113-7.
  • Shirzad Siboni, M.; Khataee, A.; Vafaei, F.; Joo, S.W. (2014) Comparative removal of two textile dyes from aqueous solution by adsorption onto marine-source waste shell: kinetic and isotherm studies. The Korean Journal of Chemical Engineering, 31 (8): 1451–1459. doi:10.1007/s11814-014-0085-4.
  • Kariminiaae-Hamedaani, H.R.; Sakurai, A.; Sakakibara, M. (2007) Decolourization of synthetic dyes by a new manganese peroxidase producing white rot fungus. Dyes and Pigments, 72 (2): 157–162. doi:10.1016/j.dyepig.2005.08.010.
  • Sufaid Khan, M.; Ahmad, A.; Ullah Khan Bangash, F.; Sikindar Shah, S.; Khan, P. (2013) Removal of basic dye from aqueous solutions using nano scale zero valent iron (NZVI) as adsorbent. The Journal of the Chemical Society of Pakistan, 35 (3): 744–748.
  • Sharma, D.K.; Saini, H.S.; Singh, M.; Chimni, S.S.; Chadha, B.S. (2004) Biological treatment of textile dye acid violet-17 by bacterial consortium in an up-flow immobilized cell bioreactor. Letters in Applied Microbiology, 38 (5): 345–350. doi:10.1111/j.1472-765X.2004.01500.x.
  • Wong, P.W.; Teng, T.T.; Norulaini, N.A.R.N. (2007) Efficiency of the coagulation-flocculation method for the treatment of dye mixtures containing disperse and reactive dye. Water Quality Research Journal of Canada, 42 (1): 54–62. doi:10.2166/wqrj.2007.008.
  • Sivaraj, R.; Namasivayam, C.; Kadirvelu, K. (2001) Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions. Waste Management, 21 (1): 105–110. doi:10.1016/S0956-053X(00)00076-3.
  • Liu, H.L.; Chiou, Y.R. (2005) Optimal decolorization efficiency of reactive red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chemical Engineering Journal, 112 (1–3): 173–179. doi:10.1016/j.cej.2005.07.012.
  • Ince, N.H.; Tezcanli, G. (2001) Reactive dyestuff degradation by combined sonolysis and ozonation. Dyes and Pigments, 49 (3): 145–153. doi:10.1016/S0143-7208(01)00019-5.
  • Okitsu, K.; Iwasaki, K.; Yobiko, Y.; Bandow, H.; Nishimura, R.; Maeda, Y. (2005) Sonochemical degradation of azo dyes in aqueous solution: a new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes. Ultrasonics Sonochemistry, 12 (4): 255–262. doi:10.1016/j.ultsonch.2004.01.038.
  • Ghodbane, H.; Hamdaoui, O. (2009) Degradation of acid blue 25 in aqueous media using 1700 kHz ultrasonic irradiation: ultrasound/Fe (II) and ultrasound/H2O2 combinations. Ultrasonics Sonochemistry, 16 (5): 593–598. doi:10.1016/j.ultsonch.2008.11.006.
  • Jamshidi, M.; Ghaedi, M.; Dashtian, K.; Ghaedi, A.M.; Hajati, S.; Goudarzi, A.; Alipanahpour, E. (2016) Highly efficient simultaneous ultrasonic assisted adsorption of brilliant green and eosin B onto ZnS nanoparticles loaded activated carbon: artificial neural network modelling and central composite design optimization. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 153: 257–267. doi:10.1016/j.saa.2015.08.024.
  • Jamshidi, M.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Bazrafshan, A. (2015) Ultrasound-assisted removal of Al3+ ions and alizarin red S by activated carbon engrafted with Ag nanoparticles: central composite design and genetic algorithm optimization. RSC Advances, 5 (73): 59522–59532. doi:10.1039/C5RA10981G.
  • Nasiri Azad, F.; Ghaedi, M.; Dashtian, K.; Jamshidi, A.; Hassani, G.; Montazerozohori, M.; Hajati, S.; Rajabi, M.; Bazrafshan, A.A. (2016) Preparation and characterization of an AC–fe3O4–au hybrid for the simultaneous removal of Cd2+, Pb2+, Cr3+ and Ni2+ ions from aqueous solution via complexation with 2-((2,4-dichloro-benzylidene)-amino)-benzenethiol: taguchi optimization. RSC Advances, 6 (24): 19780–19791. doi:10.1039/C6RA01910B.
  • Dashtian, K.; Zare-Dorabei, R. (2017) Synthesis and characterization of functionalized mesoprous SBA-15 decorated with Fe3O4 nanoparticles for removal of Ce(III) ions from aqueous solution: ICP–OES detection and central composite design optimization. Journal of Colloid and Interface Science, 494: 114–123. doi:10.1016/j.jcis.2017.01.072.
  • Kheirandish, S.; Ghaedi, M.; Dashtian, K.; Jannesar, R.; Montazerozohori, M.; Pourebrahim, F.; Ali Zare, M. (2017) Simultaneous removal of Cd(II), Ni(II), Pb(II) and Cu(II) ions via their complexation with HBANSA based on a combined ultrasound-assisted and cloud point adsorption method using CSG-BiPO4/FePO4 as novel adsorbent: FAAS detection and optimization process. Journal of Colloid and Interface Science, 500: 241–252. doi:10.1016/j.jcis.2017.03.070.
  • Ghaedi, M.; NasiriAzad, F.; Dashtian, K.; Hajati, S.; Goudarzi, A.; Soylak, M. (2016) Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 167: 157–164. doi:10.1016/j.saa.2016.05.025.
  • Naimi-Joubani, M.; Shirzad-Siboni, M.; Yang, J.K.; Gholami, M.; Farzadkia, M. (2015) Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. Journal Industrial and Engineering Chemistry, 22: 317–323. doi:10.1016/j.jiec.2014.07.025.
  • Samarghandi, M.R.; Yang, J.K.; Lee, S.M.; Giahi, O.; Shirzad-Siboni, M. (2014) Effect of different type of organic compounds on the photocatalytic reduction of Cr (VI) in presence of ZnO nanoparticles. Desalination and Water Treatment, 52 (7–9): 1–8. doi:10.1080/19443994.2013.797624.
  • Yang, J.K.; Lee, S.M.; Shirzad Siboni, M. (2012) Effect of different types of organic compounds on the photocatalytic reduction of Cr (VI). Environmental Technology, 33 (17): 2027–2032. doi:10.1080/09593330.2012.655325.
  • Shirzad Siboni, M.; Samadi, M.T.; Yang, J.K.; Lee, S.M. (2012) Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study. Desalination and Water Treatment, 40 (1–3): 77–83. doi:10.1080/19443994.2012.671144.
  • Shirzad Siboni, M.; Samadi, M.T.; Yang, J.K.; Lee, S.M. (2011) Photocatalytic reduction of Cr (VI) and Ni(II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: A kinetic study. Environmental Technology, 32 (13–14): 1573–1579. doi:10.1080/09593330.2010.543933.
  • Mohagheghian, A.; Karimi, S.A.; Yang, J.K.; Shirzad Siboni, M. (2015) Photocatalytic degradation of a textile dye by illuminated tungsten oxide nanopowder. Journal of Advanced Oxidation Technologies, 18 (1): 61–68.
  • Farrokhi, M.; Hosseini, S.C.; Yang, J.K.; Shirzad Siboni, M. (2015) Application of ZnO–fe3O4 nanocomposite on the removal of azo dye from aqueous Solutions: kinetics and equilibrium Studies. Water, Air, and Soil Pollution, 225 (2113): 1–12.
  • Salem Hammed, A.;. (2007) Characterization and thermal decomposition of indolylidene aniline azo-dyes derivatives. Jordan Journal of Chemical, 2 (2): 133–144.
  • Masoud, M.S.; Ali, A.E.; Shaker, M.A.; Ghani, M.A. (2004) Solvatochromic behavior of the electronic adsorption spectra of some azo derivatives of aminopyridines. Spectrochimica Acta Part A, 60 (13): 3155–3159. doi:10.1016/j.saa.2004.02.030.
  • Ho, Y.S.;. (2006) Review of second order models for adsorption systems. Journal of Hazardous Materials B, 136 (3): 681–689. doi:10.1016/j.jhazmat.2005.12.043.
  • Ofomaja, A.E.;. (2007) Sorption dynamics and isotherm studies of methylene blue uptake on to palm kernel fiber. Chemical Engineering Journal, 126 (1): 35–43. doi:10.1016/j.cej.2006.08.022.
  • Ho, Y.S.; Mckay, G. (1999) Pseudo second order model for sorption processes. Process Biochemistry, 34 (5): 451–465. doi:10.1016/S0032-9592(98)00112-5.
  • Rahmani, Z.; Kermani, M.; Gholami, M.; Jafari, A.J.; Mahmoodi, N.M. (2012) Effectiveness of photochemical and sonochemical processes in degradation of basic violet 16 (BV16) dye from aqueous solutions. Iranian Journal of Environmental Health \Science & Engineering, 9 (14): 1–7. doi:10.1186/1735-2746-9-1.
  • Shirzad-Siboni, M.; Khataee, A.; Vafaei, F. (2014) Comparative removal of two textile dyes from aqueous solution by adsorption onto marine-source waste shell: Kinetic and isotherm studies. Korean J. Chem. Eng, 31 (8): 1451–1459. http://dx.doi.org/10.1007/s11814-014-0085-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.