270
Views
12
CrossRef citations to date
0
Altmetric
Flotation

Study on flotation performances and adsorption mechanism of 2-carboxyethylphenylphosphinic acid to cassiterite

, , &
Pages 1815-1828 | Received 20 Oct 2018, Accepted 14 Nov 2018, Published online: 28 Nov 2018

References

  • Feng, Q.C.; Zhao, W.J.; Wen, S.M.; Cao, Q.B. (2017) Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector. Separation and Purification Technology, 178: 193–199. doi:10.1016/j.seppur.2017.01.053
  • Falcon, L.M. (1982) The gravity recovery of cassiterite. Journal of the Southern African Institute of Mining and Metallurgy, 4: 112–117.
  • Baldauf, H.; Schoenherr, J.; Schubert, H. (1985) Alkane dicarboxylic acids and aminonaphthol sulfnoic acids-a new reagent regime for cassiterite flotation. International Journal of Mineral Processing, 15: 117–133. doi:10.1016/0301-7516(85)90028-6
  • Sreenivas, T.; Padmanabhan, N.P.H. (2002) Surface chemistry and flotation of cassiterite with alkyl hydroxamates. Colloids & Surfaces A Physicochemical & Engineering Aspects, 205: 47–59. doi:10.1016/S0927-7757(01)01146-3
  • Leistenr, T.; Embrechts, M.; Leißner, T.; Chelgani, S.C.; Osbahr, I. (2016) A study of the reprocessing of fine and ultrafine cassiterite from gravity tailing residues by using various flotation techniques. Minerals Engineering, 96–97: 94–98. doi:10.1016/j.mineng.2016.06.020
  • Polkin, S.I.; Laptev, S.F.; Matsuev, L.P.; Adamov, E.V.; Krasnukhina, A.V.; Purvinskii, A.F. (1974) Theory and Practice in the Flotation of Cassiterite Fines [C]//10th International Mineral Processing Congress; British Mining and Metallurgy Association: London, England.
  • Senior, G.; Poling, G. (1986) The Chemistry of Cassiterite Flotation [C]//SOMASUNDARAN P Ed. Advances in Mineral Processing; SME/AIME, 229−254: Littleton.
  • Wottgen, E. (1969) Adsorption of phosphonic acids on cassiterite. Transactions of Institution of Minerals and Metallurgy, 78: C91–C97.
  • Khangaonkar, P.R.; Kamarudin, H. (1994) Studies on the cassiteritesulphosuccinamate flotation system. International Journal of Mineral Processing, 42: 99–110. doi:10.1016/0301-7516(94)90022-1
  • Wang, P.P.; Qin, W.Q.; Ren, L.Y.; Wei, Q.; Liu, R.Z.; Yang, C.R.; Zhong, S.P. (2013) Solution chemistry and utilization of alkyl hydroxamic acid in flotation of fine cassiterite. Transactions of Nonferrous Metals Society of China, 23: 1789–1796. doi:10.1016/S1003-6326(13)62662-X
  • Liu, J.; Gong, G.C.; Han, Y.X.; Zhu, Y.M. (2017) New insights into the adsorption of oleate on cassiterite: A DFT study. Minerals, 7: 236. doi:10.3390/min7120236
  • Angadi, S.I.; Sreenivas, T.; Jeon, H.S.; Baek, S.H.; Mishra, B.K. (2015) A review of cassiterite beneficiation fundamentals and plant practices. Minerals Engineering, 70: 178–200. doi:10.1016/j.mineng.2014.09.009
  • Gruner, H.; Bilsing, U. (1992) Cassiterite flotation using styrene phosphonic acid to produce high-grade concentrates at high recoveries from finely disseminated ores-comparison with other collectors and discussion of effective circuit configurations. Minerals Engineering, 5: 429–434. doi:10.1016/0892-6875(92)90222-U
  • Rath, S.S.; Sinha, N.; Sahoo, H.; Das, B.; Mishra, B.K. (2014) Molecular modeling studies of oleate adsorption on iron oxides. Applied Surface Science, 295: 115–122. doi:10.1016/j.apsusc.2014.01.014
  • Quast, K. (2016) Literature review on the interaction of oleate with non-sulphide minerals using zeta potential. Minerals Engineering, 94: 10–20. doi:10.1016/j.mineng.2016.04.016
  • Chen, P.; Zhai, J.H.; Sun, W.; Hu, Y.H.; Yin, Z.G. (2017) The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector. Minerals Engineering, 111: 100–107. doi:10.1016/j.mineng.2017.06.009
  • Quast, K. (2018) Direct measurement of oleate adsorption on hematite and its consequences for flotation. Minerals Engineering, 118: 122–132. doi:10.1016/j.mineng.2017.12.011
  • Peng, H.Q.; Luo, W.; Wu, D.; Bie, X.X.; Shao, H.; Jiao, W.Y.; Liu, Y.K. (2017) Study on the effect of Fe3+ on zircon flotation separation from cassiterite using sodium oleate as collector. Minerals, 7: 18. doi:10.3390/min7070108
  • Gong, G.C.; Han, Y.X.; Liu, J.; Zhu, Y.M.; Li, Y.F.; Yuan, S. (2017) In situ investigation of the adsorption of styrene phosphonic acid on cassiterite (110) surface by molecular modeling. Minerals, 7: 181. doi:10.3390/min7100181
  • Kuys, K.J.; Roberts, N.K. (1987) In situ investigation of the adsorption of styrene phosphonic acid on cassiterite by FTIR-ATR spectroscopy. Colloids and Surfaces, 24: 1–17. doi:10.1016/0166-6622(87)80257-3
  • Farrow, J.B.; Warren, L.J. (1988) Adsorption of short-chained organic acids on stannic oxide. Colloids and Surfaces, 34: 255–269. doi:10.1016/0166-6622(88)80104-5
  • Tan, X.; He, F.Y.; Shang, Y.B.; Yin, W.Z. (2016) Flotation behavior and adsorption mechanism of (1-hydroxy-2-methyl-2-octenyl) phosphonic acid to cassiterite. Transactions of Nonferrous Metals Society of China, 26: 2469–2478. doi:10.1016/S1003-6326(16)64368-6
  • Li, F.X.; Zhong, H.; Zhao, G.; Wang, S.; Liu, G.Y. (2015) Flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid to cassiterite. Applied Surface Science, 353: 856–864. doi:10.1016/j.apsusc.2015.06.147
  • Collins, D.N.; Kirkup, L.; Daveym, N.; Arthur, C. (1968) Flotation of cassiterite: development of a flotation process. Transactions of Institution of Minerals and Metallurgy, 77: C1–C13.
  • Wang, L.; Liu, R.Q.; Hu, Y.H.; Liu, J.P.; Sun, W. (2016) Adsorption behavior of mixed cationic/anionic surfactants and their depression mechanism on the flotation of quartz. Powder Technology, 302: 15–20. doi:10.1016/j.powtec.2016.08.043
  • Gao, Z.Y.; Bai, D.; Sun, W.; Cao, X.F.; Hu, Y.H. (2015) Selective flotation of scheelite from calcite and fluorite using a collector mixture. Minerals Engineering, 72: 23–26. doi:10.1016/j.mineng.2014.12.025
  • Parsonage, P.; Marsden, A. (1987) The influence of the structure of reagents on their effectiveness as dispersants for cassiterite suspensions. International Journal of Mineral Processing, 20: 161–192. doi:10.1016/0301-7516(87)90065-2
  • Rao, S.R. (2013) Surface Chemistry of Froth Flotation: Volume 1: Fundamentals; Springer Science & Business Media: New York, US.
  • Fuerstenau, D.W.; Pradip. (2005) Zeta potentials in the flotation of oxide and silicate minerals. Advances in Colloid & Interface Sciences, 114–115: 9–26. doi:10.1016/j.cis.2004.08.006
  • Bogdanova, N.F.; Klebanov, A.V.; Ermakova, L.E.; Sidorova, M.P.; Aleksandrov, D.A. (2004) Adsorption of ions on the surface of tin dioxide and its electrokinetic characteristics in 1: 1 electrolyte solutions. Colloid Journal, 66: 409–417. doi:10.1023/B:COLL.0000037445.08721.85
  • Sreenivas, T.; Manohar, C. (2000) Adsorption of octyl hydroxamic acids/salts on cassiterite. Mineral Processing and Extractive Metallurgy Review, 20: 503–519. doi:10.1080/08827500008547441
  • Qin, W.Q.; Xu, Y.B.; Liu, H.; Ren, L.Y.; Yang, C.R. (2011) Flotation and surface behavior of cassiterite with salicylhydroxamic acid. Industrial & Engineering Chemistry Research, 50: 10778–10783. doi:10.1021/ie200800d
  • Tian, M.J.; Gao, Z.Y.; Sun, W.; Han, H.S.; Sun, L.; Hu, Y.H. (2018) Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: new perspective and new practice. Journal of Colloid and Interface Science, 529: 150–160. doi:10.1016/j.jcis.2018.05.113
  • Wang, L.S.; Kang, H.B.; Wang, S.B.; Liu, Y.; Wang, R. (2007) Solubilities, thermostabilities and flame retardance behaviour of phosphorus-containing flame retardants and copolymers. Fluid Phase Equilibria, 258: 99–107. doi:10.1016/j.fluid.2007.04.031
  • Wang, L.; Sun, W.; Hu, Y.H.; Xu, L.H. (2014) Adsorption mechanism of mixed anionic/cationic collectors in muscovite – quartz flotation system. Minerals Engineering, 64: 44–50. doi:10.1016/j.mineng.2014.03.021
  • Guo, X.Z.; Wang, L.S. (2010) Solubilities of phosphorus-containing compounds in selected solvents. Journal of Chemical & Engineering Data, 55: 4709–4720. doi:10.1021/je100341q
  • Wang, Z.W.; Sun, Q.X.; Wu, J.S.; Wang, L.S. (2003) Solubilities of 2-Carboxyethylphenylphosphinic acid and 4-Carboxyphenylphenylphosphinic acid in water. Journal of Chemical & Engineering Data, 48: 1073–1075. doi:10.1021/je0340396
  • Wu, X.Q.; Zhu, J.G. (2006) Selective flotation of cassiterite with benzohydroxamic acid. Minerals Engineering, 19: 1410–1417. doi:10.1016/j.mineng.2006.02.003
  • Liu, Y.; Shen, Z.W.; Deng, J.; Jiang, S.Q. (2008) Vibration spectra and genetic type of cassiterites, Spectrosc. Spectroscopy and Spectral Analysis, 7: 1506–1509. (in Chinese).
  • Tian, M.J.; Liu, R.Q.; Gao, Z.Y.; Chen, P.; Han, H.S.; Wang, L.; Zhang, C.Y.; Sun, W.; Hu, Y.H. (2018) Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector. Minerals Engineering, 119: 31–37. doi:10.1016/j.mineng.2018.01.011
  • Luo, B.B.; Zhu, Y.M.; Sun, C.Y.; Li, Y.J.; Han, Y.X. (2015) Flotation and adsorption of a new collector α-Bromodecanoic acid on quartz surface. Minerals Engineering, 77: 86–92. doi:10.1016/j.mineng.2015.03.003
  • Parker, T.; Shi, F.N.; Evans, C.; Powell, M. (2015) The effects of electrical comminution on the mineral liberation and surface chemistry of a porphyry copper ore. Minerals Engineering, 15: 101–106.
  • Shchukarev, A.; Sjoberg, S. (2005) XPS with fast-frozen samples: a renewed approach to study the real mineral/solution interface. Surface Science, 584: 106–112. doi:10.1016/j.susc.2005.01.060
  • Tian, M.J.; Hu, Y.H.; Sun, W.; Liu, R.Q. (2017) tudy on the mechanism and application of a novel collector-complexes in cassiterite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 522: 635–641. doi:10.1016/j.colsurfa.2017.02.051
  • Tian, M.J.; Gao, Z.Y.; Ji, B.; Fan, R.Y.; Liu, R.Q.; Chen, P.; Sun, W.; Hu, Y.H. (2018) Selective flotation of cassiterite from calcite with salicylhydroxamic acid collector and carboxymethyl cellulose depressant. Minerals, 8: 316. doi:10.3390/min8080316
  • Sukunta, J.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. (2017) Highly-sensitive H2S sensors based on flame-made V-substituted SnO2 sensing films. Sensors & Actuators B Chemical, 242: 1095–1107. doi:10.1016/j.snb.2016.09.140
  • Orrillo, P.A.; Ribotta, S.B.; Gassa, L.M.; Benitez, G.; Salvarezza, R.C.; Vela, M.E. (2018) Phosphonic acid functionalization of nanostructured Ni–W coatings on steel. Applied Surface Science, 433: 292–299. doi:10.1016/j.apsusc.2017.09.222
  • Wang, K.P.; Liu, Q. (2013) Adsorption of phosphorylated chitosan on mineral surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436: 656–663. doi:10.1016/j.colsurfa.2013.07.030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.