288
Views
19
CrossRef citations to date
0
Altmetric
Catalysis

Optimization of sono-Fenton degradation of Acid Blue 113 using iron vanadate nanoparticles

, ORCID Icon &
Pages 2943-2958 | Received 12 Feb 2018, Accepted 03 Dec 2018, Published online: 25 Dec 2018

References

  • Dindarsafa, M.; Khataee, A.; Kaymak, B.; Vahid, B.; Karimi, A.; Rahmani, A. (2017) Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye. Ultrasonics Sonochemistry, 34: 389–399. doi:10.1016/j.ultsonch.2016.06.016
  • Muhd Julkapli, N.; Bagheri, S.; Bee Abd Hamid, S. (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. The Scientific World Journal, 2014: 1–25. doi:10.1155/2014/692307
  • Shahmoradi, B.; Maleki, A.; Byrappa, K. (2015) Removal of disperse orange 25 using in situ surface-modified iron-doped TiO2 nanoparticles. Desalination and Water Treatment, 53 (13): 3615–3622. doi:10.1080/19443994.2013.873994
  • Kaya, N. (2017) A comprehensive study on adsorption behaviour of some azo dyes from aqueous solution onto different adsorbents. Water Science and Technology, 76 (2): 478–489. doi:10.2166/wst.2017.216
  • Fan, J.; Guo, Y.; Wang, J.; Fan, M. (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 166 (2): 904–910. doi:10.1016/j.jhazmat.2008.11.091
  • Manu, B. (2007) Physico‐chemical treatment of indigo dye wastewater. Coloration Technology, 123 (3): 197–202. doi:10.1111/cte.2007.123.issue-3
  • Arimi, M.M. (2017) Modified natural zeolite as heterogeneous Fenton catalyst in treatment of recalcitrants in industrial effluent. Progress in Natural Science: Materials International, 27 (2): 275–282. doi:10.1016/j.pnsc.2017.02.001
  • Lutterbeck, C.A.; Baginska, E.; Machado, Ê.L.; Kümmerer, K. (2015) Removal of the anti-cancer drug methotrexate from water by advanced oxidation processes: aerobic biodegradation and toxicity studies after treatment. Chemosphere, 141: 290–296. doi:10.1016/j.chemosphere.2015.07.069
  • Pouran, S.R.; Bayrami, A.; Aziz, A.A.; Daud, W.M.A.W.; Shafeeyan, M.S. (2016) Ultrasound and UV assisted Fenton treatment of recalcitrant wastewaters using transition metal-substituted-magnetite nanoparticles. Journal of Molecular Liquids, 222: 1076–1084. doi:10.1016/j.molliq.2016.07.120
  • Verma, A.; Kaur Hura, A.; Dixit, D. (2015) Sequential photo-Fenton and sono-photo-Fenton degradation studies of Reactive Black 5 (RB5). Desalination and Water Treatment, 56 (3): 677–683. doi:10.1080/19443994.2014.940390
  • Rahmani, Z.; Kermani, M.; Gholami, M.; Jafari, A.J.; Mahmoodi, N.M. (2012) Effectiveness of photochemical and sonochemical processes in degradation of Basic Violet 16 (BV16) dye from aqueous solutions. Iranian Journal of Environmental Health Science & Engineering, 9 (1): 14.
  • Intarasuwan, K.; Amornpitoksuk, P.; Suwanboon, S.; Graidist, P. (2017) Photocatalytic dye degradation by ZnO nanoparticles prepared from X2C2O4 (X = H, Na and NH4) and the cytotoxicity of the treated dye solutions. Separation and Purification Technology, 177: 304–312. doi:10.1016/j.seppur.2016.12.040
  • Zhong, Y.; Liang, X.; He, Z.; Tan, W.; He, H.; Zhu, R.; Zhong, Y.; Zhu, J.; Yuan, P.; Jiang, Z. (2014) The UV/Fenton degradation of tetrabromobisphenol A catalyzed by nanocrystalline chromium substituted magnetite. Journal of Nanoscience and Nanotechnology, 14 (9): 7307–7314.
  • Bai, X.; Lyu, L.; Ma, W.; Ye, Z. (2016) Heterogeneous UV/Fenton degradation of bisphenol A catalyzed by synergistic effects of FeCo2O4/TiO2/GO. Environmental Science and Pollution Research, 23 (22): 22734–22743. doi:10.1007/s11356-016-7316-7
  • Adityosulindro, S.; Barthe, L.; González-Labrada, K.; Haza, U.J.J.; Delmas, H.; Julcour, C. (2017) Sonolysis and sono-Fenton oxidation for removal of ibuprofen in (waste) water. Ultrasonics Sonochemistry, 39: 889–896. doi:10.1016/j.ultsonch.2017.06.008
  • Chen, D.; Sharma, S.K.; Mudhoo, A. (2011) Handbook on Applications of Ultrasound: Sonochemistry for Sustainability. Boca Raton, FL: CRC press.
  • Hartmann, M.; Kullmann, S.; Keller, H. (2010) Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. Journal of Materials Chemistry, 20 (41): 9002–9017. doi:10.1039/c0jm00577k
  • Nguyen, T.D.; Phan, N.H.; Do, M.H.; Ngo, K.T. (2011) Magnetic Fe2MO4 (M: Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. Journal of Hazardous Materials, 185 (2): 653–661. doi:10.1016/j.jhazmat.2010.09.068
  • Nithya, V.; Selvan, R.K.; Sanjeeviraja, C.; Radheep, D.M.; Arumugam, S. (2011) Synthesis and characterization of FeVO4 nanoparticles. Materials Research Bulletin, 46 (10): 1654–1658. doi:10.1016/j.materresbull.2011.06.005
  • Ozturk, B.; Soylu, G.S.P. (2015) Synthesis of surfactant-assisted FeVO4 nanostructure: characterization and photocatalytic degradation of phenol. Journal of Molecular Catalysis A: Chemical, 398: 65–71. doi:10.1016/j.molcata.2014.11.013
  • Lehnen, T.; Valldor, M.; Nižňanský, D.; Mathur, S. (2014) Hydrothermally grown porous FeVO4 nanorods and their integration as active material in gas-sensing devices. Journal of Materials Chemistry A, 2 (6): 1862–1868. doi:10.1039/C3TA12821K
  • Kaneti, Y.V.; Zhang, Z.; Yue, J.; Jiang, X.; Yu, A. (2013) Porous FeVO4 nanorods: synthesis, characterization, and gas-sensing properties toward volatile organic compounds. Journal of Nanoparticle Research, 15 (9): 1948. doi:10.1007/s11051-013-1948-z
  • Wu, G.; Li, J.; Fang, Z.; Lan, L.; Wang, R.; Lin, T.; Gong, M.; Chen, Y. (2015) Effectively enhance catalytic performance by adjusting pH during the synthesis of active components over FeVO4/TiO2–WO3–SiO2 monolith catalysts. Chemical Engineering Journal, 271: 1–13. doi:10.1016/j.cej.2015.02.012
  • Deng, J.; Jiang, J.; Zhang, Y.; Lin, X.; Du, C.; Xiong, Y. (2008) FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Applied Catalysis B: Environmental, 84 (3): 468–473. doi:10.1016/j.apcatb.2008.04.029
  • Nachiyar, C.V.; Sunkar, S.; Kumar, G.N.; Karunya, A.; Ananth, P.; Prakash, P.; Jabasingh, S.A. (2012) Biodegradation of Acid Blue 113 containing textile effluent by constructed aerobic bacterial consortia: optimization and mechanism. Journal of Bioremediation & Biodegradation, 3 (9): 162. doi:10.4172/2155-6199.1000162
  • Salehi, K.; Bahmani, A.; Shahmoradi, B.; Pordel, M.; Kohzadi, S.; Gong, Y.; Guo, H.; Shivaraju, H.; Rezaee, R.; Pawar, R. (2017) Response surface methodology (RSM) optimization approach for degradation of Direct Blue 71 dye using CuO–ZnO nanocomposite. International Journal of Environmental Science and Technology, 14 (10): 2067–2076. doi:10.1007/s13762-017-1308-0
  • Shahmoradi, B.; Yavari, S.; Zandsalimi, Y.; Shivaraju, H.; Negahdari, M.; Maleki, A.; Mckay, G.; Pawar, R.R.; Lee, S.-M. (2018) Optimization of solar degradation efficiency of bio-composting leachate using Nd: ZnO nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 356: 201–211. doi:10.1016/j.jphotochem.2018.01.002
  • Zanjanchi, M.; Golmojdeh, H.; Arvand, M. (2009) Enhanced adsorptive and photocatalytic achievements in removal of methylene blue by incorporating tungstophosphoric acid–TiO2 into MCM-41. Journal of Hazardous Materials, 169 (1): 233–239. doi:10.1016/j.jhazmat.2009.03.080
  • Salehi, K.; Shahmoradi, B.; Bahmani, A.; Pirsaheb, M.; Shivaraju, H. (2016) Optimization of reactive black 5 degradation using hydrothermally synthesized NiO/TiO2 nanocomposite under natural sunlight irradiation. Desalination and Water Treatment, 57 (52): 25256–25266. doi:10.1080/19443994.2016.1149890
  • Basturk, E.; Karatas, M. (2014) Advanced oxidation of reactive blue 181 solution: a comparison between Fenton and sono-Fenton process. Ultrasonics Sonochemistry, 21 (5): 1881–1885. doi:10.1016/j.ultsonch.2014.03.026
  • Behnajady, M.; Modirshahla, N.; Ghanbary, F. (2007) A kinetic model for the decolorization of CI Acid Yellow 23 by Fenton process. Journal of Hazardous Materials, 148 (1): 98–102. doi:10.1016/j.jhazmat.2007.02.003
  • Bharadwaj, A.; Saroha, A.K. (2014) Decolorization of the textile wastewater containing Reactive Blue 19 dye by Fenton and photo-Fenton oxidation. Journal of Hazardous, Toxic, and Radioactive Waste, 19 (4): 04014043. doi:10.1061/(ASCE)HZ.2153-5515.0000267
  • Khataee, A.; Gholami, P.; Vahid, B. (2016) Heterogeneous sono-Fenton-like process using nanostructured pyrite prepared by Ar glow discharge plasma for treatment of a textile dye. Ultrasonics Sonochemistry, 29: 213–225. doi:10.1016/j.ultsonch.2015.09.012
  • Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. (2016) Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Hoboken, NJ: John Wiley & Sons.
  • Hua, Y.; Wang, S.; Xiao, J.; Cui, C.; Wang, C. (2017) Preparation and characterization of Fe3O4/gallic acid/graphene oxide magnetic nanocomposites as highly efficient Fenton catalysts. RSC Advances, 7 (46): 28979–28986. doi:10.1039/C6RA23939K
  • Bokare, A.D.; Choi, W. (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: 121–135. doi:10.1016/j.jhazmat.2014.04.054
  • Burbano, A.A.; Dionysiou, D.D.; Suidan, M.T.; Richardson, T.L. (2005) Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Research, 39 (1): 107–118. doi:10.1016/j.watres.2004.09.008
  • Dutta, K.; Mukhopadhyay, S.; Bhattacharjee, S.; Chaudhuri, B. (2001) Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materials, 84 (1): 57–71.
  • Oliveira, T.D.D.; Martini, W.S.; Santos, M.D.; Matos, M.A.C.; Rocha, L.L.D. (2015) Caffeine oxidation in water by Fenton and Fenton-like processes: effects of inorganic anions and ecotoxicological evaluation on aquatic organisms. Journal of the Brazilian Chemical Society, 26 (1): 178–184.
  • Araujo, F.; Yokoyama, L.; Teixeira, L.; Campos, J. (2011) Heterogeneous Fenton process using the mineral hematite for the discolouration of a reactive dye solution. Brazilian Journal of Chemical Engineering, 28 (4): 605–616. doi:10.1590/S0104-66322011000400006
  • Khataee, A.; Karimi, A.; Arefi-Oskoui, S.; Soltani, R.D.C.; Hanifehpour, Y.; Soltani, B.; Joo, S.W. (2015) Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrasonics Sonochemistry, 22: 371–381. doi:10.1016/j.ultsonch.2014.05.023
  • Radović, M.D.; Mitrović, J.Z.; Kostić, M.M.; Bojić, D.V.; Petrović, M.M.; Najdanović, S.M.; Bojić, A.L. (2015) Comparison of ultraviolet radiation/hydrogen peroxide, Fenton and photo-Fenton processes for the decolorization of reactive dyes. Hemijska Industrija, 69 (6): 657–665. doi:10.2298/HEMIND140905088R
  • Ammar, H.B.;. (2016) Sono-Fenton process for metronidazole degradation in aqueous solution: effect of acoustic cavitation and peroxydisulfate anion. Ultrasonics Sonochemistry, 33: 164–169. doi:10.1016/j.ultsonch.2016.04.035
  • Daraei, H.; Maleki, A.; Mahvi, A.H.; Zandsalimi, Y.; Alaei, L.; Gharibi, F. (2014) Synthesis of ZnO nano-sono-catalyst for degradation of reactive dye focusing on energy consumption: operational parameters influence, modeling, and optimization. Desalination and Water Treatment, 52 (34–36): 6745–6755. doi:10.1080/19443994.2013.821040
  • Rasool, M.A.; Tavakoli, B.; Chaibakhsh, N.; Pendashteh, A.R.; Mirroshandel, A.S. (2016) Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site. Ecological Engineering, 90: 431–437. doi:10.1016/j.ecoleng.2016.01.057
  • Liu, C.-C.; Hsieh, Y.-H.; Lai, P.-F.; Li, C.-H.; Kao, C.-L. (2006) Photodegradation treatment of azo dye wastewater by UV/TiO2 process. Dyes and Pigments, 68 (2): 191–195. doi:10.1016/j.dyepig.2004.12.002
  • Entezari, M.H.; Heshmati, A.; Sarafraz-Yazdi, A. (2005) A combination of ultrasound and inorganic catalyst: removal of 2-chlorophenol from aqueous solution. Ultrasonics Sonochemistry, 12 (1): 137–141. doi:10.1016/j.ultsonch.2004.06.005
  • Barrera-Salgado, K.E.; Ramírez-Robledo, G.; Álvarez-Gallegos, A.; Pineda-Arellano, C.A.; Sierra-Espinosa, F.Z.; Hernández-Pérez, J.A.; Silva-Martínez, S. (2016) Fenton process coupled to ultrasound and UV light irradiation for the oxidation of a model pollutant. Journal of Chemistry, 2016: 1–7. doi:10.1155/2016/4262530
  • Liu, S.-Q.; Feng, L.-R.; Xu, N.; Chen, Z.-G.; Wang, X.-M. (2012) Magnetic nickel ferrite as a heterogeneous photo-Fenton catalyst for the degradation of rhodamine B in the presence of oxalic acid. Chemical Engineering Journal, 203: 432–439. doi:10.1016/j.cej.2012.07.071
  • Wang, H.; Huang, Y. (2011) Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2. Journal of Hazardous Materials, 191 (1): 163–169. doi:10.1016/j.jhazmat.2011.04.057
  • Ma, Z.; Ren, L.; Xing, S.; Wu, Y.; Gao, Y. (2015) Sodium dodecyl sulfate modified FeCo2O4 with enhanced Fenton-like activity at neutral pH. The Journal of Physical Chemistry C, 119 (40): 23068–23074. doi:10.1021/acs.jpcc.5b07575
  • Kim, E.-J.; Oh, D.; Lee, C.-S.; Gong, J.; Kim, J.; Chang, Y.-S. (2017) Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: crystal phase-dependent behavior. Catalysis Today, 282: 71–76. doi:10.1016/j.cattod.2016.03.034
  • Li, Y.; Zhang, F.-S. (2010) Catalytic oxidation of Methyl Orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash. Chemical Engineering Journal, 158 (2): 148–153. doi:10.1016/j.cej.2009.12.021
  • Arbabi, M.; Mayahi, B.; Mohammadi Moghadam, F.; Sedehi, M.; Hemati, S. (2017) Removal of acid bleu 113 by UV/H2O2/Fe3O4 process: optimization of treatment conditions using experimental design. Journal of Shahrekord Uuniversity of Medical Sciences, 19 (5): 13–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.