1,941
Views
18
CrossRef citations to date
0
Altmetric
Adsorption

Ag+ ions imprinted cryogels for selective removal of silver ions from aqueous solutions

, &
Pages 2993-3004 | Received 03 Mar 2018, Accepted 03 Dec 2018, Published online: 20 Dec 2018

References

  • Pedroso, M.S.; Pinho, G.L.L.; Rodrigues, S.C.; Bianchini, A. (2007) Mechanism of acute silver toxicity in the euryhaline copepod Acartia tonsa. Aquatic Toxicology, 82 (3): 173–180.
  • Hsu, S.L.C.; Wu, R.T. (2007) Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Materials Letters, 61 (17): 3719–3722. doi:10.1016/j.matlet.2006.12.040
  • Park, S.; Seo, D.; Lee, J. (2008) Preparation of Pb-free silver paste containing nanoparticles. Colloids Surf A: Physicochemical and Engineering Aspect, (313–314): 197–201. doi:10.1016/j.colsurfa.2007.04.092
  • Martinez-Castanon, G.A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J.R.; Ruiz, F. (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. N.R, 10 (8): 1343–1348. doi:10.1007/s11051-008-9428-6
  • Shiraishi, Y.; Toshima, N. (1999) Colloidal silver catalysts for oxidation of ethylene. Journal of Molecular Catalysis A: Chemical, 141 (1–3): 187–192. doi:10.1016/S1381-1169(98)00262-3
  • McFarland, A.D.; Van Duyne, R.P. (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Letters, 3 (8): 1057–1062. doi:10.1021/nl034372s
  • Sneha, K.; Sathishkumar, M.; Mao, J.; Kwak, I.S.; Yun, Y.S. (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chemical Engineering Journal, 162 (3): 989–996. doi:10.1016/j.cej.2010.07.006
  • Mack, C.; Wilhelmi, B.; Duncan, J.R.; Burgess, J.E. (2007) Research reviewpaper: biosorption of precious metals. Biotechnology Advances, 25 (3): 264–271. doi:10.1016/j.biotechadv.2007.01.003
  • Wen, L.S.; Santschi, P.H.; Gill, G.A.; Tang, D. (2002) Silver concentration in Colorado, USA, water sheds using improved methodology. Environmental Toxicology and Chemistry, 21 (10): 2040–2051.
  • Sonune, A.; Grate, R. (2004) Developments in wastewater treatment methods. Desalination, 167: 55–63. doi:10.1016/j.desal.2004.06.113
  • Önnby, L.; Pakade, V.; Mattiasson, B.; Kirsebom, H. (2012) Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Research, 46 (13): 4111–4120. doi:10.1016/j.watres.2012.05.028
  • Murray, A.; Örmeci, B. (2012) Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: a review. Environmental Science and Pollution Research, 19 (9): 3820–3830. doi:10.1007/s11356-012-1119-2
  • Tamahkar, E.; Bakhshpour, M.; Andac, M.; Denizli, A. (2017) Ion imprinted cryogels for selective removal of Ni(II) ions from aqueous solutions. Separation and Purification Technology, 179: 36–44. doi:10.1016/j.seppur.2016.12.048
  • Andac, M.; Denizli, A. (2014) Affinity-recognition-based polymeric cryogels for protein depletion studies. RSC Advances, 4 (59): 31130–31141. doi:10.1039/C4RA02655A
  • Cimen, D.; Göktürk, I.; Yılmaz, F. (2016) Removal of iron by chelation with molecularly imprinted supermacroporous cryogel. Artificial Cells, Nanomedicine, and Biotechnology, 44 (4): 1158–1166.
  • Andaç, M.; Galaev, I.Y.; Denizli, A. (2016) Affinity based and molecularly imprinted cryogels: applications in biomacromolecule purification. Journal of Chromatography B, 1021: 69–80. doi:10.1016/j.jchromb.2015.09.034
  • Denizli, A.; Sanli, N.; Garipcan, B.; Patir, S.; Alsancak, G. (2004) Methacryloylamidoglutamic acid incorporated porous poly (methyl methacrylate) beads for heavy-metal removal. Industrial and Engineering Chemistry Research, 43 (19): 6095–6101. doi:10.1021/ie030204z
  • Luoa, X.; Luo, S.; Zhan, Y.; Shu, H.; Huang, Y.; Tu, X. (2011) Novel Cu (II) magnetic ion imprinted materials prepared by surface imprinted technique combined with a sol–gel process. Journal of Hazardous Materials, 192: 949–955. doi:10.1016/j.jhazmat.2011.05.042
  • Beuvais, R.A.; Alexandratos, S.D. (1998) Polymer-supported reagents for the selective complexation of metal ions: an overview. Reactive and Functional Polymers, 36 (2): 113–123. doi:10.1016/S1381-5148(98)00016-9
  • Dabrowski, A.;. (2001) Adsorption from theory to practice. Advances in Colloid and Interface Science, 93 (1–3): 135–224.
  • Augusto, F.; Carasek, E.; Silva, R.G.; Rivellino, S.R.; Batista, A.D.; Martendal, E. (2010) New sorbents for extraction and microextraction techniques. Journal of Chromatography A, 1217 (16): 2533–2542. doi:10.1016/j.chroma.2009.12.033
  • Rivas, B.L.; Jara, M.; Pereira, E.D. (2003) Preparation and adsorption properties of the chelating resins containing carboxylic, sulfonic, and imidazole groups. Journal of Applied Polymer Science, 89 (10): 2852–2856. doi:10.1002/(ISSN)1097-4628
  • Rivas, B.L.; Pereira, E.; Jara, M.; Esparza, C. (2006) Resins with the ability to bind copper and uranyl ions. Journal of Applied Polymer Science, 99 (3): 706–711. doi:10.1002/(ISSN)1097-4628
  • Ozay, O.; Ekici, S.; Barana, Y.; Kubilay,; Aktas, N.; Sahiner, N. (2010) Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination, 260 (1–3): 57–64. doi:10.1016/j.desal.2010.04.067
  • O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.W. (2006) A modified cellulose adsorbent for the removal of nickel (II) from aqueous solutions. Journal of Chemical Technology and Biotechnology, 81 (11): 1820–1828. doi:10.1002/jctb.1609
  • O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.W. (2006) A chelating cellulose adsorbent for the removal of Cu (II) from aqueous solutions. Journal of Applied Polymer Science, 99 (6): 2888–2897. doi:10.1002/app.22568
  • Onnby, L.; Giorgi, C.; Plieva, F.M.; Mattiasson, B. (2010) Removal of heavy metals from water effluents using supermacroporous metal chelating cryogels. Biotechnology Progress, 26 (5): 1295–1302. doi:10.1002/btpr.422
  • Uzun, L.; Kara, A.; Osman, B.; Yilmaz, E.; Besirli, N.; Denizli, A. (2009) Removal of heavy metal ions by magnetic beads containing triazole chelating groups. Journal of Applied Polymer Science, 114 (4): 2246–2253. doi:10.1002/app.30511
  • Senel, S.; Uzun, L.; Kara, A.; Denizli, A. (2008) Heavy metal removal from synthetic solutions with magnetic beads under magnetic field. Journal of Macromolecular Science Pure and Applied Chemistry, 45 (8): 635–642. doi:10.1080/10601320802168801
  • Türkmen, D.; Öztürk, N.; Akgöl, S.; Denizli, A. (2010) High capacity removal of mercury(ıı) ions by poly(hydroxyethyl metacrylaye) nanoparticles. In: Wright MF-PHEBWS (ed) Environanotechnology; Elsevier: Amsterdam, 23–38. doi:10.1016/C2009-0-18515-X
  • Türkmen, D.; Yilmaz, E.; Öztürk, N.; Akgöl, S.; Denizli, A. (2009) Poly (hydroxyethyl methacrylate) nanobeads containing imidazole groups for removal of Cu(II) ions. Materials Science and Engineering C, 29 (6): 2072–2078. doi:10.1016/j.msec.2009.04.005
  • Uguzdogan, E.; Denkbas, E.B.; Öztürk, E.; Tuncel, S.A.; Kabasakal, O.S. (2009) Preparation and characterization of polyethyleneglycolmethacrylate (PEGMA)-co-vinylimidazole (VI) microspheres to use in heavy metal removal. Journal of Hazardous Materials, 162 (2–3): 1073–1080. doi:10.1016/j.jhazmat.2008.05.145
  • Lozinsky, V.I.; Galaev, I.Y.; Plieva, F.M.; Savina, I.N.; Jungvid, H.; Mattiasson, B. (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends in Biotechnology, 21 (10): 445–451. doi:10.1016/j.tibtech.2003.08.002
  • Arvidsson, P.; Plieva, F.M.; Lozinsky, V.I.; Galaev, I.Y.; Mattiasson, B. (2003) Direct chromatographic capture of enzyme from crude homogenate using immobilized metal affinity chromatography on a continuous supermacroporous adsorbent. Journal of Chromatography A, 986 (2): 275–290.
  • Lozinsky, V.I.; Plieva, F.M.; Galaev, I.Y.; Mattiasson, B. (2002) The potential of polymeric cryogels in bioseparation. Bioseparation, 10 (4–5): 163–188. doi:10.1023/A:1016386902611
  • Plieva, F.M.; Galaev, I.Y.; Mattiasson, B. (2007) Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate‐containing fluids and cell culture applications. Journal of Separation Science, 30 (11): 1657–1671. doi:10.1002/jssc.200700127
  • Arpa, C.; Bereli, N.; Özdil, E.; Bektas, S.; Denizli, A. (2010) Reactive green HE‐4BD functionalized supermacroporous poly (hydroxyethyl methacrylate) cryogel for heavy metal removal. Journal of Applied Polymer Science, 118 (4): 2208–2215.
  • Alkan, H.; Bereli, N.; Baysal, Z.; Denizli, A. (2010) Selective removal of the autoantibodies from rheumatoid arthritis patient plasma using protein A carrying affinity cryogels. Biochemical Engineering Journal, 51 (3): 153–159. doi:10.1016/j.bej.2010.06.010
  • Bereli, N.; Andac, M.; Baydemir, G.; Say, R.; Galaev, I.Y.; Denizli, A. (2008) Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. Journal of Chromatography A, 1190 (1–2): 18–26. doi:10.1016/j.chroma.2008.02.110
  • Bereli, N.; Sener, G.; Altintas, E.B.; Yavuz, H.; Denizli, A. (2010) Poly (glycidyl methacrylate) beads embedded cryogels for pseudo-specific affinity depletion of albumin and immunoglobulin G. Materials Science and Engineering C, 30 (2): 323–329. doi:10.1016/j.msec.2009.11.013
  • Le Noir, M.; Plieva, F.; Hey, T.; Guieyse, B.; Mattiasson, B. (2007) Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants. Journal of Chromatography A, 1154 (1–2): 158–164. doi:10.1016/j.chroma.2007.03.064
  • Wang, X.; Min, B.G. (2008) Comparison of porous poly (vinyl alcohol)/hydroxyapatite composite cryogels and cryogels immobilized on poly (vinyl alcohol) and polyurethane foams for removal of cadmium. Journal of Hazardous Materials, 156 (1–3): 381–386. doi:10.1016/j.jhazmat.2007.12.027
  • Kirsebom, H.; Mattiasson, B.; Galaev, I.Y. (2009) Building macroporous materials from microgels and microbes via one-step cryogelation. Langmuir, 25 (15): 8462–8465. doi:10.1021/la9006857
  • Kirsebom, H.; Topgaard, D.; Galaev, I.Y.; Mattiasson, B. (2010) Modulating the porosity of cryogels by influencing the nonfrozen liquid phase through the addition of inert solutes. Langmuir, 26 (20): 16129–16133. doi:10.1021/la102917c
  • Yao, K.; Yun, J.; Shen, S.; Wang, L.; He, X.; Yu, X. (2006) Characterization of a novel continuous supermacroporous monolithic cryogel embedded with nanoparticles for protein chromatography. Journal of Chromatography A, 1109 (1): 103–110. doi:10.1016/j.chroma.2006.01.014
  • Baydemir, G.; Bereli, N.; Andaç, M.; Say, R.; Galaev, I.Y.; Denizli, A. (2009) Bilirubin recognition via molecularly imprinted supermacroporous cryogels. Colloids and Surfaces B: Biointerfaces, 68 (1): 33–38. doi:10.1016/j.colsurfb.2008.09.008
  • Demirel, G.; Ozcetin, G.; Turan, E.; Caykara, T. (2005) pH/Temperature-sensitive imprinted ionic poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) hydrogels for bovine serum albumin. Macromolecular Bioscience, 5 (10): 1032–1037. doi:10.1002/mabi.200500085
  • Denizli, A.; Say, R.; Garipcan, B.; Emir, S.; Karabakan, A.; Patir, S. (2003) Metal-complexing ligand methacryloylamidocysteine containing polymer beads for Cd(II) removal. Separation and Purification Technology, 30 (1): 3–10. doi:10.1016/S1383-5866(02)00094-1
  • Andac, M.; Say, R.; Denizli, A. (2004) Molecular recognition based cadmium removal from human plasma. Journal of Chromatography B, 811: 119–126. doi:10.1016/j.jchromb.2004.08.024
  • Aşır, S.; Uzun, L.; Türkmen, D.; Say, R.; Denizli, A. (2005) Ion‐selective imprinted superporous monolith for cadmium removal from human plasma. Separation Science and Technology, 40: 3167–3185. doi:10.1080/01496390500385376
  • Ren, Y.; Wei, X.; Zhang, M. (2008) Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent. Journal of Hazardous Materials, 158 (1): 14–22. doi:10.1016/j.jhazmat.2008.01.044
  • Fan, L.; Luo, C.; Lv, Z.; Lu, F.; Qiu, H. (2011) Removal of Ag(I) ions from water environment using a novel magnetic thiourea-chitosan imprinted Ag(I) ions. Journal of Hazardous Materials, 194: 193–201. doi:10.1016/j.jhazmat.2011.07.080
  • Karabakan, A.; Karabulut, S.; Denizli, A.; Yurum, Y. (2004) Removal of silver(I) from aqueous solutions with low-rank Turkish coals. Adsorption Science and Technology, 22 (2): 135–144. doi:10.1260/026361704323150917
  • Wang, Y.Y.; Liu, Y.T.H. (2003) Preparation of new crosslinked chitosan with crown ether and their adsorption for silver ion for antibacterial activities. Carbohydrate Polymers, 53 (4): 425–430. doi:10.1016/S0144-8617(03)00104-8
  • Kazemi, E.; Mohammad, A.; Shabani, H.; Dadfarnia, S. (2015) Synthesis and characterization of a nanomagnetic ion imprinted polymer for selective extraction of silver ions from aqueous samples. Microchimica Acta, 182 (5–6): 1025–1033. doi:10.1007/s00604-014-1430-3
  • Yin, X.; Long, J.; Xi, Y.; Luo, X. (2017) Recovery of silver from wastewater using a new magnetic photocatalytic ion-imprinted polymer. ACS Sustainable Chemistry & Engineering, 5: 2090−2097. doi:10.1021/acssuschemeng.6b01871

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.