176
Views
2
CrossRef citations to date
0
Altmetric
Adsorption

Absorption of carbon dioxide in aqueous MDEA solution coupling dust suppression under atomization

, , , &
Pages 3027-3036 | Received 31 Jul 2018, Accepted 04 Dec 2018, Published online: 24 Dec 2018

References

  • Pachauri, R.K.; Allen, M.; Barros, V.; Broome, J.; Cramer, W.; Christ, R.; Church, J.; Clarke, L.; Dahe, Q.; Dasgupta, P. (2014) Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
  • Lawal, A.; Wang, M.; Stephenson, P.; Koumpouras, G.; Yeung, H. (2010) Dynamic modeling and analysis of post-combustion CO2 chemical absorption process for coal-fired power plants. Fuel, 89 (10): 2791–2801. doi:10.1016/j.fuel.2010.05.030
  • Oexmann, J.; Hensel, C.; Kather, A. (2008) Post-combustion CO2-capture from coal-fired power plants: preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate. International Journal of Greenhouse Gas Control Impact Factor, 2 (4): 539–552. doi:10.1016/j.ijggc.2008.04.002
  • Mofarahi, M.; Khojasteh, Y.; Khaledi, H.; Farahnak, A. (2008) Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine. Energy, 33 (8): 1311–1319. doi:10.1016/j.energy.2008.02.013
  • Ansaloni, L.; Rennemo, R.; Knuutila, H.K.; Deng, L.-Y. (2017) Development of membrane contactors using volatile amine-based absorbents for CO2 capture: amine permeation through the membrane. Journal of Membrane Science, 537 (9): 272–282. doi:10.1016/j.memsci.2017.05.016
  • Puxty, G.; Rowland, R.; Attalla, M. (2010) Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine. Chemical Engineering Science, 65 (2): 915–922. doi:10.1016/j.ces.2009.09.042
  • Olajire, A.A.;. (2010) CO2 capture and separation technologies for end-of-pipe applications-A review. Energy, 35 (6): 2610–2628. doi:10.1016/j.energy.2010.02.030
  • Erga, O.; Juliussen, O.; Lidal, H. (1995) CO2 recovery by means of aqueous amines. Energy Conversion and Management, 36 (6–9): 387–392. doi:10.1016/0196-8904(95)00027-B
  • Usubharatana, P.; Tontiwachwuthikul, P. (2009) Enhancement factor and kinetics of CO2 capture by MEA-methanol hybrid solvents. Energy Procedia, 1 (1): 95–102. doi:10.1016/j.egypro.2009.01.015
  • Aboudheir, A.; Tontiwachwuthikul, P.; Chakma, A.; Idem, R. (2003) Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded concentrated aqueous monoethanolamine solutions. Chemical Engineering Science, 58 (23): 5195–5210. doi:10.1016/j.ces.2003.08.014
  • Savage, D.W.; Kim, C.J. (1985) Chemical kinetics of CO2 reactions with DEA and DIPA in aqueous solvents. American Institute of Chemical Engineers Journal, 31 (2): 296–301. doi:10.1002/aic.690310217
  • Zhang, F.; Fang, C.G.; Wu, Y.T.; Wang, Y.T.; Li, A.M.; Zhang, Z.B. (2010) Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chemical Engineering Journal, 160 (2): 691–697. doi:10.1016/j.cej.2010.04.013
  • Edali, M.; Aboudheir, A.; Idem, R. (2009) Kinetics of carbon dioxide absorption into mixed aqueous solutions of MDEA and MEA using a laminar jet apparatus and a numerically solved 2D absorption rate/kinetics model. International Journal of Greenhouse Gas Control Impact Factor, 3 (5): 550–560. doi:10.1016/j.ijggc.2009.04.006
  • Koornneef, J.; Ramirez, A.; Harmelen, T.V.; Horssen, A.V.; Turkenburg, W.; Faaij, A. (2010) The impact of CO2 capture in the power and heat sector on the emission of SO2, NOx, particulate matter, volatile organic compounds and NH3 in the European Union. Atmospheric Environment, 44 (11): 1369–1385. doi:10.1016/j.atmosenv.2010.01.022
  • Oexmann, J.; Hensel, C.; Kather, A. (2008) Post-combustion CO2-capture from coal-fired power plants: preliminary evaluation of an integrated chemical absorption process with piperazine-promoted potassium carbonate. International Journal of Greenhouse Gas Control Impact Factor, 2 (4): 539–552. doi:10.1016/j.ijggc.2008.04.002
  • Qin, F.; Wang, S.J.; Kim, I.; Svendsen, H.F.; Chen, C.H. (2011) Heat of absorption of CO2 in aqueous ammonia and ammonium carbonate/carbamate solutions. International Journal of Greenhouse Gas Control Impact Factor, 5 (3): 405–412. doi:10.1016/j.ijggc.2010.04.005
  • Biard, P.F.; Couvert, A. (2013) Overview of mass transfer enhancement factor determination for acidic and basic compounds absorption in water. Chemical Engineering Journal, 222:444–453. doi:10.1016/j.cej.2013.02.071
  • Alper, E.; Whichtendahl, B.; Deckwer, W.D. (1980) Gas absorption mechanism in catalytic slurry reactors. Chemical Engineering Science, 35 (1–2): 217–222. doi:10.1016/0009-2509(80)80090-X
  • Kaya, A.; Schumpe, A. (2005) Surfactant adsorption rather than “shuttle effect”? Chemical Engineering Science, 60 (22): 6504–6510. doi:10.1016/j.ces.2005.03.002
  • Liu, H.J.; Li, D.; Yao, H.; Pan, Y.; Zhang, Y.; Zhang, B. (2015) Enhancement of carbon dioxide mass transfer rate coupling the synthesis of calcium carbonate fine particles by (ionic liquid)-emulsion liquid membrane. Journal of Dispersion Science and Technology, 36 (4): 489–495. doi:10.1080/01932691.2014.907540
  • Dagaonkar, M.V.; Heeres, H.J.; Beenackers, A.A.C.M.; Pangarkar, V.G. (2003) The application of fine TiO2 particles for enhanced gas absorption. Chemical Engineering Journal, 92 (1–3): 151–159. doi:10.1016/S1385-8947(02)00188-2
  • Kordač, M.; Linek, V. (2006) Mechanism of enhanced gas absorption in presence of fine solid particles. Effect of molecular diffusivity on mass transfer coefficient in stirred cell. Chemical Engineering Science, 61 (21): 7125–7132. doi:10.1016/j.ces.2006.06.025
  • Yu, H.M.; Cheng, W.M.; Peng, H.T.; Xie, Y. (2018) An investigation of the nozzle’s atomization dust suppression rules in a fully-mechanized excavation face based on the airflow-droplet-dust three-phase coupling model. Advanced Powder Technology, 29 (4): 941–956. doi:10.1016/j.apt.2018.01.012
  • Okawa, H.; Nishi, K.; Kawamura, Y.; Kato, T.; Sugawara, K. (2017) Utilization of ultrasonic atomization for dust control in underground mining. Japanese Journal of Applied Physics. Part 1, Regular Papers & Short Notes, 56 (07JE10): 1–6. doi:10.7567/JJAP.56.07JE10
  • Dou, G.L.; Xu, C.H. (2017) Comparison of effects of sodium carboxymethylcellulose and superabsorbent polymer on coal dust wettability by surfactants. Journal of Dispersion Science and Technology, 38 (11): 1542–1546. doi:10.1080/01932691.2016.1260028
  • Gaspar, J.; Gladis, A.; Woodley, J.M.; Thomsen, K.; Solms, N.V. (2017) Rate-based modelling and validation of a pilot absorber using MDEA enhanced with carbonic anhydrase (CA). Energy Procedia, 114 (114): 707–718. doi:10.1016/j.egypro.2017.03.1213
  • Versteeg, G.F.; van Dijck, L.A.J.; van Swaaij, W.P.M. (1996) On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions an overview. Chemical Engineering Communication, 144 (1): 113–158. doi:10.1080/00986449608936450
  • Little, R.J.; van Swaaij, W.P.M.; Versteeg, G.F. (1990) Kinetics of carbon dioxide with tertiary amines in aqueous solution. American Institute of Chemical Engineers Journal, 36 (11): 1633–1640. doi:10.1002/aic.690361103
  • Jamal, A.; Meisen, A.; Lim, C.J. (2006) Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor—I. Experimental apparatus and mathematical modeling. Chemical Engineering Science, 61 (19): 6571–6589. doi:10.1016/j.ces.2006.04.046
  • Afkhamipour, M.; Mofarahi, M. (2014) Sensitivity analysis of the rate-based CO2 absorber model using amine solutions(MEA,MDEA and AMP) in packed column. International Journal of Greenhouse Gas Control Impact Factor, 25 (6): 9–22. doi:10.1016/j.ijggc.2014.03.005
  • Ahmady, A.; Hashim, M.A.; Aroua, M.K. (2010) Experimental investigation on the solubility and initial rate of absorption of co2 in aqueous mixtures of methyldiethanolamine with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Journal of Chemical and Engineering Data, 55 (12): 5733–5738. doi:10.1021/je1006949
  • van Swaaij, W.P.M.; Versteeg, G.F. (1992) Mass transfer accompanied with complex reversible chemical reactions in Gas-liquid systems: an overview. Chemical Engineering Science, 47(13–14):3181–3195. doi:10.1016/0009-2509(92)85028-A
  • Kucka, L.; Richter, J.; Kenig, E.Y.; Górak, A. (2003) Determination of gas–liquid reaction kinetics with a stirred cell reactor. Separation and Purification Technology, 31 (2): 163–175. doi:10.1016/S1383-5866(02)00179-X
  • Ye, C.B.; Dang, M.H.; Yao, C.Q.; Chen, G. W; Yuan, Q. (2013) Process analysis on CO2 absorption by monoethanolamine solutions in microchannel reactors. Chemical Engineering Journal, 225 (3): 120–127. doi:10.1016/j.cej.2013.03.053
  • Yue, J.; Chen, G.W.; Yuan, Q.; Luo, L.G.; Gonthier, Y. (2007) Hydrodynamics and mass transfer characteristics in gas–liquid flow through a rectangular microchannel. Chemical Engineering Science, 62 (7): 2096–2108. doi:10.1016/j.ces.2006.12.057
  • Fu, D.; Zhang, P.; Wang, L.M. (2016) Absorption performance of CO2 in high concentrated [Bmim][Lys]-MDEA aqueous solution. Energy, 113:1–8. doi:10.1016/j.energy.2016.07.049
  • Maham, Y.; Mather, A.E. (2001) Surface thermodynamics of aqueous solutions of alkylethanolamines. Fluid Phase Equilibria, 182 (1): 325–336. doi:10.1016/S0378-3812(01)00391-0
  • Al-Ghawas, H.A.; Hagewiesche, D.P.; Ruiz-Ibanez, G.; Sandall, O.C. (1989) Physicochemical properties important for carbon dioxide absorption in aqueous methyldiethanolamine. Journal of Chemical & Engineering Data, 34 (4): 385–391. doi:10.1021/je00058a004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.