234
Views
8
CrossRef citations to date
0
Altmetric
Adsorption

Adsorption properties of Pb2+ on thermal-activated serpentine

, , , &
Pages 3037-3045 | Received 22 May 2018, Accepted 10 Dec 2018, Published online: 24 Jan 2019

References

  • Babula, P.; Adam, V.; Opatrilova, R.; Zehnalek, J.; Havel, L.; Kizek, R. (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environmental Chemistry Letters, 6: 189–213. doi:10.1007/s10311-008-0159-9
  • Wang, C.; Wang, H.; Gu, G. (2018) Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption. Carbohydrate Polymers, 182: 21–28. doi:10.1016/j.carbpol.2017.11.004
  • Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Liu, Y.; Yu, J.; Yi, H.; Ye, S.; Deng, R. (2018) Sorption, transport and biodegradation - an insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610–611: 1154–1163. doi:10.1016/j.scitotenv.2017.08.089
  • Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Feng, H.; Song, B.; Huang, C.; Tang, X. (2018) Effect of exogenous carbonaceous materials on the bioavailability of organic pollutants and their ecological risks. Soil Biology and Biochemistry, 116: 70–81. doi:10.1016/j.soilbio.2017.09.027
  • Bouabidi, Z.B.; El-Naas, M.H.; Cortes, D.; Mckay, G. (2018) Steel-making dust as a potential adsorbent for the removal of lead(II) from an aqueous solution. Chemical Engineering Journal, 334: 837–844. doi:10.1016/j.cej.2017.10.073
  • Qiu, G.; Ng, S.P.; Liang, X.; Ding, N.; Chen, X.; Wu, C.L. (2017) Label-free LSPR detection of trace lead(II) ions in drinking water by synthetic poly(mPD-co-ASA) nanoparticles on gold nanoislands. Analytical Chemistry, 89: 1985–1993. doi:10.1021/acs.analchem.6b04536
  • Li, P.H.; Li, Y.X.; Chen, S.H.; Li, S.S.; Jiang, M.; Guo, Z.; Liu, J.H.; Huang, X.J.; Yang, M. (2018) Sensitive and interference-free electrochemical determination of Pb(II) in wastewater using porous Ce-Zr oxide nanospheres. Sensors and Actuators B: Chemical, 257: 1009–1020. doi:10.1016/j.snb.2017.11.061
  • Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. (2006) Physicochemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118: 83–98. doi:10.1016/j.cej.2006.01.015
  • Mahmoud, A.; Hoadley, A.F.A. (2012) An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Research, 46: 3364–3376. doi:10.1016/j.watres.2012.03.039
  • Cheng, Z.F.; Wu, Y.H.; Wang, N.; Yang, W.; Xu, T. (2010) Development of a novel hollow fiber cation-exchange membrane from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) for removal of heavy-metal ions. Industrial & Engineering Chemistry Research, 49: 3079–3087. doi:10.1021/ie901408c
  • Gao, J.; Sun, S.P.; Zhu, W.P.; Chung, T.S. (2014) Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Research, 63: 252–261. doi:10.1016/j.watres.2014.06.006
  • Samrani, A.G.E.; Lartiges, B.S.; Villieras, F. (2008) Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Research, 42: 951–960. doi:10.1016/j.watres.2007.09.009
  • Cechinel, M.A.P.; Ulson de Souza, S.M.A.G.; Ulson de Souza, A.A. (2014) Study of lead(II) adsorption onto activated carbon originating from cow bone. Journal of Cleaner Production, 65: 342–349. doi:10.1016/j.jclepro.2013.08.020
  • Depci, T.; Kul, A.R.; Önal, Y. (2012) Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: study in single- and multi-solute systems. Chemical Engineering Journal, 200–202: 224–236. doi:10.1016/j.cej.2012.06.077
  • Wang, C.; Wang, H. (2018) Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles. Chemosphere, 192: 1–4. doi:10.1016/j.chemosphere.2017.10.125
  • Kolodyńska, D.; Krukowska, J.; Thomas, P. (2017) Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chemical Engineering Journal, 307: 353–363. doi:10.1016/j.cej.2016.08.088
  • Moghaddam, M.R.; Fatemi, S.; Keshtkar, A. (2013) Adsorption of lead (Pb2+) and uranium cations by brown algae; experimental and thermodynamic modeling. Chemical Engineering Journal, 231: 294–303. doi:10.1016/j.cej.2013.07.037
  • Jiang, R.; Tian, J.; Zheng, H.; Qi, J.; Sun, S.; Li, X. (2015) A novel magnetic adsorbent based on waste litchi peels for removing Pb(II) from aqueous solution. Journal of Environmental Management, 155: 24–30. doi:10.1016/j.jenvman.2015.03.009
  • Taşar, S.; Kaya, F.; Özer, A. (2014) Biosorption of lead(II) ions from aqueous solution by peanut shells: equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 2: 1018–1026. doi:10.1016/j.jece.2014.03.015
  • Brigatti, M.F.; Lugli, C.; Poppi, L. (2000) Kinetics of heavy-metal removal and recovery in sepiolite. Applied Clay Science, 16: 45–57. doi:10.1016/S0169-1317(99)00046-0
  • Liu, P.; Wang, T.M. (2007) Adsorption properties of hyperbranched aliphatic polyester grafted attapulgite towards heavy metal ions. Journal of Hazardous Materials, 149: 75–79. doi:10.1016/j.jhazmat.2007.03.048
  • Guerra, D.L.; Viana, R.R.; Airoldi, C. (2009) Adsorption of mercury cation on chemically modified clay. Materials Research Bulletin, 44: 485–491. doi:10.1016/j.materresbull.2008.08.002
  • Zhuang, J.; Yu, G.R. (2002) Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere, 49: 619–628. doi:10.1016/S0045-6535(02)00332-6
  • Nachtegaal, M.; Scheidegger, A.M.; Dahn, R.; Chateigner, D.; Furrer, G. (2005) Immobilization of Ni by Al-modified montmorillonite: a novel uptake mechanism. Geochimica et cosmochimica acta, 69: 4211–4225. doi:10.1016/j.gca.2005.04.013
  • Krishna, B.S.; Murty, D.S.R.; Prakash, B.S.J. (2001) Surfactant-modified clay as adsorbent for chromate. Applied Clay Science, 20: 65–71. doi:10.1016/S0169-1317(01)00039-4
  • Demirbas, O.; Alkan, M.; Dogan, M.; Turhan, Y.; Namli, H.; Turan, P. (2007) Electrokinetic and adsorption properties of sepiolite modified by 3-aminopropyltriethoxysilane. Journal of Hazardous Materials, 149: 650–656. doi:10.1016/j.jhazmat.2007.04.036
  • Li, X.-J.; Wang, L.-J.; Lu, A.-H.; Wang, C.-Q. (2003) A discussion on activation mechanism of atom groups in serpentine. Acta Petrologica Et Mineralogica, 22: 386–390. doi:10.3969/j.issn.1000-6524.2003.z1.01
  • Cao, C.-Y.; Liang, C.-H.; Yin, Y.; Du, L.-Y. (2017) Thermal activation of serpentine for adsorption of cadmium. Journal of Hazardous Materials, 329: 222–229. doi:10.1016/j.jhazmat.2017.01.042
  • Wang, X.; Liang, C.-H.; Yin, Y. (2015) Distribution and transformation of cadmium formations amended with serpentine and lime in contaminated meadow soil. Journal of Soils and Sediments, 15: 1531–1537. doi:10.1007/s11368-015-1105-7
  • Hua, T.; Haynes, R.; Zhou, Y.-F.; Boullemant, A.; Chandrawana, I. (2015) Potential for use of industrial waste materials as filter media for removal of Al, Mo As, V and Ga from alkaline drainage in constructed wetlands-adsorption studies. Water Research, 71: 32–41. doi:10.1016/j.watres.2014.12.036
  • Yin, H.; Zhu, J. (2016) In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment. Chemical Engineering Journal, 285: 112–120. doi:10.1016/j.cej.2015.09.108
  • Man, P.; Choi, C.L.; Seo, Y.J.; Yeo, S.K.; Choi, J.; Komarneni, S.; Lee, J.H. (2007) Reactions of Cu2+, and Pb2+, with Mg/Al layered double hydroxide. Applied Clay Science, 37: 143–148. doi:10.1016/j.clay.2006.12.006
  • Li, H.; Mu, S.; Weng, X.; Zhao, Y.; Song, S. (2016) Rutile flotation with Pb2+ ions as activator: adsorption of Pb2+ at rutile/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506: 431–437. doi:10.1016/j.colsurfa.2016.06.046
  • Chen, W.S.; Shen, Y.H.; Tsai, M.S.; Chang, F.C. (2011) Removal of chloride from electric arc furnace dust. Journal of Hazardous Materials, 190: 639–644. doi:10.1016/j.jhazmat.2011.03.096

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.