147
Views
3
CrossRef citations to date
0
Altmetric
Ultrasound

Removal behavior of Cu(II) during Cr(VI) reduction by cast iron powder in absence and presence of ultrasound

, &
Pages 3164-3173 | Received 02 Jul 2018, Accepted 10 Dec 2018, Published online: 17 Jan 2019

References

  • Hemambika, B.; Kannan, V.R. (2012) Intrinsic characteristics of Cr6+-resistant bacteria isolated from an electroplating industry polluted soils for plant growth-promoting activities. Applied Biochemistry and Biotechnology, 167 (6): 1653–1667. doi:10.1007/s12010-012-9606-y.
  • Lv, J.-F.; Zhang, H.-P.; Tong, X.; Fan, C.-L.; Yang, W.-T.; Zheng, Y.-X. (2017) Innovative methodology for recovering titanium and chromium from a raw ilmenite concentrate by magnetic separation after modifying magnetic properties. Journal of Hazardous Materials, 325: 251–260. doi:10.1016/j.jhazmat.2016.11.075.
  • Kimbrough, D.E.; Cohen, Y.; Winer, A.M.; Creelman, L.; Mabuni, C. (1999) A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29 (1): 1–46. doi:10.1080/10643389991259164.
  • Papassiopi, N.; Vaxevanidou, K.; Christou, C.; Karagianni, E.; Antipas, G. (2014) Synthesis, characterization and stability of Cr (III) and Fe (III) hydroxides. Journal of Hazardous Materials, 264: 490–497. doi:10.1016/j.jhazmat.2013.09.058.
  • Golder, A.K.; Chanda, A.K.; Samanta, A.N.; Ray, S. (2011) Removal of hexavalent chromium by electrochemical reduction–precipitation: investigation of process performance and reaction stoichiometry. Separation and Purification Technology, 76 (3): 345–350. doi:10.1016/j.seppur.2010.11.002.
  • Li, C.; Xie, F.; Ma, Y.; Cai, T.; Li, H.; Huang, Z.; Yuan, G. (2010) Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching. Journal of Hazardous Materials, 178 (1): 823–833. doi:10.1016/j.jhazmat.2010.02.013.
  • Fu, F.; Dionysiou, D.D.; Liu, H. (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267: 194–205. doi:10.1016/j.jhazmat.2013.12.062.
  • Chen, -S.-S.; Hsu, B.-C.; Hung, L.-W. (2008) Chromate reduction by waste iron from electroplating wastewater using plug flow reactor. Journal of Hazardous Materials, 152 (3): 1092–1097. doi:10.1016/j.jhazmat.2007.07.086.
  • Lv, X.; Xu, J.; Jiang, G.; Xu, X. (2011) Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere, 85 (7): 1204–1209. doi:10.1016/j.chemosphere.2011.09.005.
  • Wang, Q.; Ren, G.; Jia, F.; Song, S. (2017) Preparation and characterization of nanoscale zero-valent iron-loaded porous sepiolite for decolorizing methylene blue in aqueous solutions. JOM, 69 (4): 699–703. doi:10.1007/s11837-017-2269-y.
  • Sudhakar, M.R.; Rama, P.; Sivachidambaram, S. (2013) Mitigation of chromium contamination by copper-ZVI bimetallic particles. Journal of Hazardous, Toxic, and Radioactive Waste, 17 (3): 181–186. doi:10.1061/(ASCE)HZ.2153-5515.0000169.
  • Zhou, H.; He, Y.; Lan, Y.; Mao, J.; Chen, S. (2008) Influence of complex reagents on removal of chromium(VI) by zero-valent iron. Chemosphere, 72 (6): 870–874. doi:10.1016/j.chemosphere.2008.04.010.
  • Gheju, M.; Balcu, I. (2010) Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: effect of scrap iron shape and size. Journal of Hazardous Materials, 182 (1–3): 484–493. doi:10.1016/j.jhazmat.2010.06.058.
  • Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.M.C.; He, D.; Dong, H. (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Research, 75: 224–248. doi:10.1016/j.watres.2015.02.034.
  • Liu, M.; Wang, Y.; Chen, L.; Zhang, Y.; Lin, Z. (2015) Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb (II) from aqueous solution. ACS Applied Materials & Interfaces, 7 (15): 7961–7969. doi:10.1021/am509184e.
  • Zhou, Z.; Dai, C.; Zhou, X.; Zhao, J.; Zhang, Y. (2015) The removal of antimony by novel NZVI-zeolite: the role of iron transformation. Water, Air, & Soil Pollution, 226 (3): 76. doi:10.1007/s11270-014-2293-2.
  • Yan, W.; Vasic, R.; Frenkel, A.I.; Koel, B.E. (2012) Intraparticle reduction of arsenite (As (III)) by nanoscale zerovalent iron (nZVI) investigated with in situ X-ray absorption spectroscopy. Environmental Science & Technology, 46 (13): 7018–7026. doi:10.1021/es2039695.
  • Karabelli, D.; ÜZüM, C.A.R.; Shahwan, T.; Eroglu, A.E.; Scott, T.B.; Hallam, K.R.; Lieberwirth, I. (2008) Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Industrial & Engineering Chemistry Research, 47 (14): 4758–4764. doi:10.1021/ie800081s.
  • Sun, J.-M.; Li, F.; Huang, J.-C. (2006) Optimum pH for Cr6+ co-removal with mixed Cu2+, Zn2+, and Ni2+ precipitation. Industrial & Engineering Chemistry Research, 45 (5): 1557–1562. doi:10.1021/ie050956o.
  • Liu, T.; Yang, X.; Wang, Z.-L.; Yan, X. (2013) Enhanced chitosan beads-supported Fe0-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers. Water Research, 47 (17): 6691–6700. doi:10.1016/j.watres.2013.09.006.
  • El-Shazly, A.H.; Mubarak, A.A.; Konsowa, A.H. (2005) Hexavalent chromium reduction using a fixed bed of scrap bearing iron spheres. Desalination, 185 (1): 307–316. doi:10.1016/j.desal.2005.03.083.
  • Mitra, P.; Sarkar, D.; Chakrabarti, S.; Dutta, B.K. (2011) Reduction of hexa-valent chromium with zero-valent iron: batch kinetic studies and rate model. Chemical Engineering Journal, 171 (1): 54–60. doi:10.1016/j.cej.2011.03.037.
  • Hung, H.-M.; Ling, F.H.; Hoffmann, M.R. (2000) Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environmental Science & Technology, 34 (9): 1758–1763. doi:10.1021/es990385p.
  • Liu, H.; Li, G.; Qu, J.; Liu, H. (2007) Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound. Journal of Hazardous Materials, 144 (1): 180–186. doi:10.1016/j.jhazmat.2006.10.009.
  • Zhang, H.; Duan, L.; Zhang, Y.; Wu, F. (2005) The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron. Dyes and Pigments, 65 (1): 39–43. doi:10.1016/j.dyepig.2004.06.015.
  • Xing, P.; Wang, J.; Lyu, T.; Zhuang, Y.; Du, X.; Luo, X. (2015) Ultrasound-assisted impurity removal from petroleum coke. Separation and Purification Technology, 151: 251–255. doi:10.1016/j.seppur.2015.07.036.
  • Xin, W.; Srinivasakannan, C.; Xin-Hui, D.; Jin-Hui, P.; Da-Jin, Y.; Shao-Hua, J. (2013) Leaching kinetics of zinc residues augmented with ultrasound. Separation and Purification Technology, 115: 66–72. doi:10.1016/j.seppur.2013.04.043.
  • Ozkan, S.G. (2012) Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel, 93: 576–580. doi:10.1016/j.fuel.2011.10.032.
  • Chen, -S.-S.; Cheng, C.-Y.; Li, C.-W.; Chai, P.-H.; Chang, Y.-M. (2007) Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. Journal of Hazardous Materials, 142 (1): 362–367. doi:10.1016/j.jhazmat.2006.08.029.
  • Gheju, M.; Iovi, A.; Balcu, I. (2008) Hexavalent chromium reduction with scrap iron in continuous-flow system. Journal of Hazardous Materials, 153 (1): 655–662. doi:10.1016/j.jhazmat.2007.09.009.
  • O’Loughlin, E.J.; Kemner, K.M.; Burris, D.R. (2003) Effects of AgI, AuIII, and CuII on the reductive dechlorination of carbon tetrachloride by green rust. Environmental Science & Technology, 37 (13): 2905–2912. doi:10.1021/es030304w.
  • Hou, M.; Wan, H.; Liu, T.; Fan, Y.; Liu, X.; Wang, X. (2008) The effect of different divalent cations on the reduction of hexavalent chromium by zerovalent iron. Applied Catalysis B: Environmental, 84 (1): 170–175. doi:10.1016/j.apcatb.2008.03.016.
  • Farmer, A.D.; Collings, A.F.; Jameson, G.J. (2000) The application of power ultrasound to the surface cleaning of silica and heavy mineral sands. Ultrasonics Sonochemistry, 7 (4): 243–247.
  • Geiger, C.L.; Ruiz, N.E.; Clausen, C.A.; Reinhart, D.R.; Quinn, J.W. (2002) Ultrasound pretreatment of elemental iron: kinetic studies of dehalogenation reaction enhancement and surface effects. Water Research, 36 (5): 1342–1350.
  • Abdel-Samad, H.; Watson, P.R. (1997) An XPS study of the adsorption of chromate on goethite (α-FeOOH). Applied Surface Science, 108 (3): 371–377. doi:10.1016/S0169-4332(96)00609-5.
  • Biesinger, M.C.; Brown, C.; Mycroft, J.R.; Davidson, R.D.; McIntyre, N.S. (2004) X-ray photoelectron spectroscopy studies of chromium compounds. Surface and Interface Analysis, 36 (12): 1550–1563. doi:10.1002/(ISSN)1096-9918.
  • Kazuhiro, S.; Noriaki, O.; Kei, K.; Kazumi, M.; Hirofumi, Y. (2011) Atomic-resolution imaging of graphite–water interface by frequency modulation atomic force microscopy. Applied Physics Express, 4 (12): 125102. doi:10.1143/APEX.4.125102.
  • Cano, E.; Torres, C.L.; Bastidas, J.M. (2001) An XPS study of copper corrosion originated by formic acid vapour at 40% and 80% relative humidity. Materials and Corrosion-Werkstoffe Und Korrosion, 52 (9): 667–676. doi:10.1002/(ISSN)1521-4176.
  • Yu, J.; Hai, Y.; Jaroniec, M. (2011) Photocatalytic hydrogen production over CuO-modified titania. Jcis, 357 (1): 223–228.
  • Irie, H.; Kamiya, K.; Shibanuma, T.; Miura, S.; Tryk, D.A.; Yokoyama, T.; Hashimoto, K. (2009) Visible light-sensitive Cu(II)-Grafted TiO2 Photocatalysts: activities and X-ray absorption fine structure analyses. Journal of Physical Chemistry C, 113 (24): 10761–10766. doi:10.1021/jp903063z.
  • Price, G.J.; Duck, F.A.; Digby, M.; Holland, W.; Berryman, T. (1997) Measurement of radical production as a result of cavitation in medical ultrasound fields. Ultrasonics Sonochemistry, 4 (2): 165–171.
  • Mark, G.; Tauber, A.; Laupert, R.; Schuchmann, H.-P.; Schulz, D.; Mues, A.; von Sonntag, C. (1998) OH-radical formation by ultrasound in aqueous solution – part II: terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrasonics Sonochemistry, 5 (2): 41–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.