193
Views
7
CrossRef citations to date
0
Altmetric
Adsorption

Structural and textural influences of surfactant-modified zeolitic materials over the methamidophos adsorption behavior

, , &
Pages 619-634 | Received 19 Jan 2018, Accepted 08 Jan 2019, Published online: 24 Jan 2019

References

  • Richardson, S.D.; Ternes, T.A. (2011) Water analysis: emerging contaminants and current issues. Analytical Chemistry, 83: 4614–4648. doi:10.1021/ac200915r
  • Kazemi, M.; Tahmasbi, M.; Valizadeh, R.; Naserian, A.; Soni, A. (2012) Organophosphate pesticides: a general review. Agricultural Science Research Journal, 2: 512–522.
  • Chandra, I.; Linthoingambi, N.; Hassain, J.; Chen, Z.; Li, J.; Zhang, G.; Jones, K. (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Science of the Total Environment, 511: 123–137. doi:10.1016/j.scitotenv.2014.12.041
  • Hernández, A.F.; Parrón, T.; Tsatsakis, A.M.; Requena, M.; Alarcón, R.; López-Guarnido, O. (2013) Toxic effects of pesticide mixtures at a molecular level. Their relevance to human health. Toxicology, 307: 136–145. doi:10.1016/j.tox.2012.06.009
  • Fenik, J.; Tankiewicz, M.; Biziuk, M. (2011) Properties and determination of pesticides in fruits and vegetables. TrAC - Trends in Analytical Chemistry, 30 (6): 814–826. doi:10.1016/j.trac.2011.02.008
  • Kumar, V.; Upadhay, N. (2013) Chemical and biochemical mechanistic fate of acephate. International Journal of Scientific and Engineering Research, 4: 2674–2678.
  • Kumar, V.; Upadhyay, N.; Kumar, V.; Sharma, S. (2015) A review on sample preparation and chromatographic determination of acephate and methamidophos in different samples. Arabian Journal of Chemistry, 8: 624–631. doi:10.1016/j.arabjc.2014.12.007
  • Ramu, S.; Seetharaman, B. (2014) Biodegradation of acephate and methamidophos by a soil bacterium Pseudomonas aeruginosa strain Is-6. Journal of Environmental Science and Health, Part B, 49: 23–34. doi:10.1080/03601234.2013.836868
  • Molina-Morales, Y.; Flores-García, M.; Balza-Quintero, A.; Benítez-Díaz, P.; Miranda-Contreras, L. (2012) Niveles de plaguicidas en aguas superficiales de una región agrícola del estado Mérida, Venezuela, entre 2008 y 2010. Revista Internacional de Contaminación Ambiental, 28 (4): 289–301.
  • Garner, F.; Jones, K. (2014) Biological monitoring for exposure to methamidophos: a human oral dosing study. Toxicology Letters, 231 (2): 277–281. doi:10.1016/j.toxlet.2014.10.008
  • Caloni, F.; Cortinovis, C.; Rivolta, M.; Davanzo, F. (2016) Suspected poisoning of domestic animals by pesticides. Science of the Total Environment, 539: 331–336. doi:10.1016/j.scitotenv.2015.09.005
  • Lo, C.C.;. (2010) Effect of pesticides on soil microbial community. Journal of Environmental Science and Health, Part B, 45 (5): 348–359. doi:10.1080/03601231003799804
  • Wang, L.; Wen, Y.; Guo, X.; Wang, G.; Li, S.; Jiang, J. (2010) Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway. Biodegradation, 21 (4): 513–523. doi:10.1007/s10532-009-9320-9
  • Carbajal-López, Y.; Gómez-Arroyo, S.; Villalobos-Pietrini, R.; Calderón-Segura, M.E.; Martínez-Arroyo, A. (2015) Biomonitoring of agricultural workers exposed to pesticide mixtures in Guerrero state, Mexico, with comet assay and micronucleus test. Environmental Science and Pollution Research, 23: 2513–2520. doi:10.1007/s11356-015-5474-7
  • Dai, K.; Peng, T.; Chen, H.; Zhang, R.; Zhang, Y. (2008) Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environmental Science and Technology, 42: 1505–1510.
  • Gutiérrez, R.F.; Santiesteban, A.; Cruz-López, L.; Bello-Mendoza, R. (2007) Removal of chlorothalonil, methyl parathion and methamidophos from water by the Fenton reaction. Environmental Technology, 28: 267–272. doi:10.1080/09593332808618787
  • Venkata, L.P.; Ki-Hyun, K. (2015) A review of photochemical approaches for the treatment of a wide range of pesticides. Journal of Hazardous Materials, 286: 325–335. doi:10.1016/j.jhazmat.2014.12.061
  • Wei, L.; Shifu, C.; Wei, Z.; Sujuan, Z. (2009) Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. Journal of Hazardous Materials, 164: 154–160. doi:10.1016/j.jhazmat.2008.07.140
  • Zhang, L.; Yan, F.; Wang, Y.; Guo, X.; Zhang, P. (2006) Photocatalytic degradation of methamidophos by UV irradiation in the presence of nano-TiO2. Inorganic Materials, 42: 1379–1387. doi:10.1134/S002016850612017X
  • Deng, S.; Chen, Y.; Wang, D.; Shi, T.; Wu, X.; Ma, X.; Li, X.; Hua, R.; Tang, X.; Li, Q.X. (2015) Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. Journal of Hazardous Materials, 297: 17–24. doi:10.1016/j.jhazmat.2015.04.052
  • Phugare, S.; Gaikwad, Y.; Jadhay, J. (2012) Biodegradation of acephate using a developed bacterial consortium and toxicological analysis using earthworms (Lumbricus terrestris) as a model animal. International Biodeterioration and Biodegradation, 69: 1–9. doi:10.1016/j.ibiod.2011.11.013
  • Wang, L.; Wen, Y.; Guo, X.; Wang, G.; Li, S.; Jiang, J. (2010) Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway. Biodegradation, 21: 513–523. doi:10.1007/s10532-009-9320-9
  • Wang, L.; Wang, G.; Li, S.; Jiang, J. (2011) Luteibacter jiangsuensis sp.: a methamidophos-degrading bacterium isolated from a methamidophos-manufacturing factory. Current Opinion in Microbiology, 62: 289–295. doi:10.1007/s00284-010-9707-1
  • Zhang, L.; Yan, F.; Shu, M.; Li, Q.; Yuan, Z. (2009) Investigation of the degradation behavior of methamidophos under microwave irradiation. Desalination, 247: 396–402. doi:10.1016/j.desal.2008.12.037
  • Dutta, A.; Singh, N. (2015) Surfactant-modified bentonite clays: preparation, characterization, and atrazine removal. Environmental Science and Pollution Research, 22: 3876–3885. doi:10.1007/s11356-014-3656-3
  • Shattar, S.F.A.; Zakaria, N.A.; Foo, K.Y. (2015) Feasibility of montmorillonite-assisted adsorption process for the effective treatment of organo-pesticides. Desalination and Water Treatment, 57: 13645–13677.
  • Ahmad, T.; Rafatullah, M.; Ghazali, A.; Sulamain, O.; Hashim, R.; Ahmad, A. (2010) Water and wastewater by different adsorbents: a Review. Journal of Environmental Science and Health, Part C, 28: 231–271. doi:10.1080/10590501.2010.525782
  • Merckel, R.; Focke, W.; Sibanda, M.; Massinga, M.; Crowther, N. (2012) Co-Intercalation of insecticides with hexadecyltrimethylammonium chloride in Mozambican bentonite. Molecular Crystals and Liquid Crystals, 555: 76–84. doi:10.1080/15421406.2012.634682
  • Park, Y.; Sun, Z.; Ayoko, G.; Frost, R. (2014) Removal of herbicides from aqueous solutions by modified forms of montmorillonite. Journal of Colloid and Interface Science, 415: 127–132. doi:10.1016/j.jcis.2013.10.024
  • Lemić, J.; Kovačević, D.; Tomašević-Canović, M.; Kovačević, D.; Stanić, T.; Pfend, R. (2006) Removal of atrazine, lindane and diazinone from water by organo-zeolites. Water Research, 40: 1079–1085. doi:10.1016/j.watres.2006.01.001
  • Rojas, R.; Vanderlinden, E.; Morillo, J.; Usero, J.; El Bakouri, H. (2014) Characterization of sorption processes for the development of low-cost pesticide decontamination techniques. Science of the Total Environment, 488–489: 124–135. doi:10.1016/j.scitotenv.2014.04.079
  • De Smedt, C.; Spanoghe, P.; Biswas, S.; Leus, K.; Van Der, P. (2015) Comparison of different solid adsorbents for the removal of mobile pesticides from aqueous solutions. Adsorption, 21: 243–254. doi:10.1007/s10450-015-9666-8
  • Colella, C.; Wise, W. (2014) The IZA Handbook of natural zeolites: a tool of knowledge on the most important family of porous minerals. Microporous and Mesoporous Materials, 189: 4–10. doi:10.1016/j.micromeso.2013.08.028
  • Misaelides, P.;. (2011) Application of natural zeolites in environmental remediation: a short review. Microporous and Mesoporous Materials, 144 (1–3): 15–18. doi:10.1016/j.micromeso.2011.03.024
  • Alshameri, A.; Yan, C.; Al-Ani, Y.; Dawood, A.; Ibrahim, A.; Zhou, C.; Wang, H. (2014) An investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: kinetics, isotherms and thermodynamics. Journal of Taiwan Institute of Chemical Engineers, 45: 554–564. doi:10.1016/j.jtice.2013.05.008
  • Dávila-Estrada, M.; Ramírez-García, J.J.; Díaz-Nava, M.C.; Solache-Ríos, M. (2016) Sorption of 17α-ethinylestradiol by surfactant-modified zeolite-rich tuff from aqueous solutions. Water, Air, and Soil Pollution, 227: 1–8. doi:10.1007/s11270-016-2850-y
  • Dávila-Estrada, M.; Ramírez-García, J.J.; Solache-Ríos, M.J.; Gallegos-Pérez, J.L. (2018) Kinetic and equilibrium sorption studies of ceftriaxone and paracetamol by surfactant-modified zeolite. Water, Air, and Soil Pollution, 229: 123. doi:10.1007/s11270-018-3783-4
  • Gamboa, P.A.; Ramírez-García, J.J.; Solache-Ríos, M.; Díaz-Nava, C.; Gallegos-Pérez, J.L. (2016) Comparison of different modified aluminosilicate networks for the removal of diclofenac. Desalination and Water Treatment, 57: 26401–26413.
  • Jiménez-Castañeda, M.E.; Medina, I.D. (2017) Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water, 9: 235. doi:10.3390/w9040235
  • Tohdee, K.; Asadullah, L.K. (2018) Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. Journal of Environmental Chemical Engineering, 6: 2821–2828. doi:10.1016/j.jece.2018.04.030
  • Campos, V.; Morais, L.C.; Buchler, P.M. (2007) Removal of chromate from aqueous solution using treatment natural zeolite. Environmental Geology, 52: 1521–1525. doi:10.1007/s00254-006-0596-3
  • Guan, H.; Bestland, E.; Zhu, C.; Zhu, H.; Albertsdottir, D.; Hutson, J.; Simmons, C.T.; Ginic-Markovic, M.; Tao, X.; Ellis, A.V. (2010) Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. Journal of Hazardous Materials, 183: 616–621. doi:10.1016/j.jhazmat.2010.07.069
  • Liu, J.; Cheng, X.; Zhang, Y.; Wang, X.; Zou, Q.; Fu, L. (2017) Zeolite modification for adsorptive removal of nitrite from aqueous solutions. Microporous and Mesoporous Materials, 252: 179–187. doi:10.1016/j.micromeso.2017.06.029
  • Mirzaei, N.; Hadi, M.; Gholami, M.; Fard, R.F.; Aminabad, M.S. (2016) Sorption of acid dye by surfactant modificated natural zeolites. Journal of the Taiwan Institute of Chemical Engineers, 59: 186–194. doi:10.1016/j.jtice.2015.07.010
  • Wang, S.; Gong, W.; Liu, X.; Gao, B.; Yue, Q. (2006) Removal of fulvic acids using the surfactant modified zeolite in a fixed-bed reactor. Separation and Purification Technology, 51: 367–373. doi:10.1016/j.seppur.2006.02.019
  • Elsheikh, A.F.; Ahmad, U.K.; Ramli, Z. (2017) Investigations on humic acid removal from water using surfactant-modified zeolite as adsorbent in a fixed-bed reactor. Water, Air, and Soil Pollution, 7: 2843–2856.
  • Lin, J.; Zhan, Y.; Zhu, Z.; Xing, Y. (2011) Adsorption of tannic acid from aqueous solution onto surfactant-modified zeolite. Journal of Hazardous Materials, 193: 102–111. doi:10.1016/j.jhazmat.2011.07.035
  • Bowman, R.S.;. (2003) Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61: 43–56. doi:10.1016/S1387-1811(03)00354-8
  • Lemić, J.; Tomašević-Čanović, M.; Adamović, M.; Kovačević, D.; Milićević, S. (2007) Competitive adsorption of polycyclic aromatic hydrocarbons on organo-zeolites. Microporous and Mesoporous Materials, 105: 317–323. doi:10.1016/j.micromeso.2007.04.014
  • González-Ortiz, A.; Ramírez-García, J.J.; Solache-Ríos, M.J. (2018) Removal of metronidazole from aqueous medium by different natural surfactant-modified zeolitic tuffs. Desalination and Water Treatment, 127: 243–254. doi:10.5004/dwt.2018.22651
  • Li, Z.; Yuansheng, D.; Hanlie, H. (2008) Transport of micelles of cationic surfactants through clinoptilolite zeolite. Microporous and Mesoporous Materials, 116: 473–477. doi:10.1016/j.micromeso.2008.05.006
  • Alvarez-García, S.; Ramírez-García, J.J.; Granados-Correa, F. (2018) Determination of kinetic, isotherm, and thermodynamic parameters of the methamidophos adsorption onto cationic surfactant-modified zeolitic materials. Water, Air, and Soil Pollution, 229: 1–17. doi:10.1007/s11270-018-3995-7
  • Shah, J.; Rasul, M.; Muhammad, M.; Ara, B.U.; Rehman, I. (2015) Development of an indirect spectrophotometric method for determination of methamidophos insecticide in soil, water and vegetable samples. Bulletin of Chemistry Society of Ethiopia, 29: 311–318. doi:10.4314/bcse.v29i2.13
  • Ruiz-Serrano, D.; Flores-Acosta, M.; Conde-Barajas, E.; Ramírez-Rosales, D.; Yañez-Limon, J.M.; Ramírez-Bon, R. (2010) Study by XPS of different conditioning processes to improve the cation exchange in clinoptilolite. Journal of Molecular Structure, 980: 149–155. doi:10.1016/j.molstruc.2010.07.007
  • Leyva-Ramos, R.; Jacobo-Azuara, A.; Díaz-Flores, P.E.; Guerrero-Coronado, R.M.; Mendoza-Barrón, J.; Berber-Mendoza, M.S. (2008) Adsorption of chromium (IV) from an aqueous solution on a surfactant-modified zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 330: 35–41. doi:10.1016/j.colsurfa.2008.07.025
  • Uzunova, E.; Mikosch, H. (2013) Cation site preference in zeolite clinoptilolite: a density functional study. Microporous and Mesoporous Materials, 177: 113–119. doi:10.1016/j.micromeso.2013.05.003
  • Rojas-Pavón, C.X.; Olguín, M.T.; Jiménez-Cedillo, M.J.; Maubert, M.A. (2015) Sorption properties of modified clinoptilolite and mordenite-rich tuffs for manganese removal from aqueous systems. Research and Reviews in Materials Science and Chemistry, 5: 29–61.
  • Mansouri, N.; Rikhtegar, N.; Panah, A.H.; Atabi, F.; Shahrak, K.B. (2013) Porosity, characterization and structural properties of natural zeolite -clinoptilolite- as a sorbent. Environment Protection Engineering, 39: 139–152.
  • Mozgawa, W.; Król, M.; Bajda, T. (2011) IR spectra in the studies of anion sorption on natural sorbents. Journal of Molecular Structure, 993: 109–114. doi:10.1016/j.molstruc.2010.11.070
  • Grundgeiger, E.; Hong, Y.; Frost, R.; Ayoko, G.; Xi, Y. (2015) Application of organo-beidellites for the adsorption of atrazine. Applied Clay Science, 105–106: 252–258. doi:10.1016/j.clay.2015.01.003
  • Reeve, P.J.; Fallowfield, H.J. (2018) Natural and surfactant modified zeolites: a review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. Journal of Environmental Management, 205: 253–261. doi:10.1016/j.jenvman.2017.09.077
  • Delkash, M.; Bakhshayesh, B.E.; Kazemian, H. (2015) Using zeolitic adsorbents to clean up special wastewater streams: a review. Microporous and Mesoporous Materials, 214: 224–241. doi:10.1016/j.micromeso.2015.04.039
  • Ramesh, K.; Reddy, S.; Rashmi, I.; Biswas, A.K.; Islam, K.R. (2015) Does particle size of clinoptilolite zeolite have a role in textural properties? Insight through differential pore volume distribution of Barret, Joyner, and Halenda model. Communications in Soil Science and Plant Analysis, 46: 2070–2078. doi:10.1080/00103624.2015.1069312

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.