230
Views
11
CrossRef citations to date
0
Altmetric
Adsorption

Effects of calcination temperature on organic functional groups of TiO2 and the adsorption performance of the TiO2 for methylene blue

, , , , , , & show all
Pages 672-683 | Received 29 Jan 2018, Accepted 22 Jan 2019, Published online: 12 Feb 2019

References

  • Wu, H.H.; Gong, Q.H.; Olson, D.H.; Li, J. (2012). Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. Chemical Reviews, 112 (2): 836–868. doi: 10.1021/cr200216x.
  • Hadi, P.; Guo, J.X.; Barford, J.; McKay, G. (2016). Multilayer dye adsorption in activated carbons-facile approach to exploit vacant sites and interlayer charge interaction. Environmental Science & Technology, 50 (10): 5041–5049. doi: 10.1021/acs.est.6b00021.
  • Sarker, M.; Bhadra, B.N.; Seo, P.W.; Jhung, S.H. (2017). Adsorption of benzotriazole and benzimidazole from water over a Co-based metal azolate framework MAF-5(Co). Journal of Hazardous Materials, 324: 131–138. doi: 10.1016/j.jhazmat.2016.10.042.
  • Apul, O.G.; Karanfil, T. (2015). Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Research, 68: 34–55. doi: 10.1016/j.watres.2014.09.032.
  • Crini, G.; Badot, P.-M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 33 (4): 399–447. doi: 10.1016/j.progpolymsci.2007.11.001.
  • Yu, M.; Li, J.; Wang, L.J. (2017). KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chemical Engineering Journal, 310: 300–306. doi: 10.1016/j.cej.2016.10.121.
  • Liu, J.; Hu, Z.Y.; Peng, Y.; Huang, H.W.; Li, Y.; Wu, M.; Ke, X.X.; Van Tendeloo, G.; Su, B.L. (2016). 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Applied Catalysis B-Environmental Journal, 181: 138–145. doi: 10.1016/j.apcatb.2015.07.054.
  • Pereira, M.F.R.; Soares, S.F.; Orfao, J.J.M.; Figueiredo, J.L. (2003). Adsorption of dyes on activated carbons: influence of surface chemical groups. Carbon, 41 (4): 811–821. doi: 10.1016/S0008-6223(02)00406-2.
  • Guedidi, H.; Reinert, L.; Lévêque, J.-M.; Soneda, Y.; Bellakhal, N.; Duclaux, L. (2013). The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen. Carbon, 54: 432–443. doi: 10.1016/j.carbon.2012.11.059.
  • Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpaa, M. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219: 499–511. doi: 10.1016/j.cej.2012.12.038.
  • Xue, G.; Liu, H.H.; Chen, Q.Y.; Hills, C.; Tyrer, M.; Innocent, F. (2011). Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites. Journal of Hazardous Materials, 186 (1): 765–772. doi: 10.1016/j.jhazmat.2010.11.063.
  • Li, G.Z.; Park, S.; Kang, D.W.; Krajmalnik-Brown, R.; Rittmann, B.E. (2011). 2,4,5-trichlorophenol degradation using a novel TiO2-coated biofilm carrier: roles of adsorption, photocatalysis, and biodegradation. Environmental Science & Technology, 45 (19): 8359–8367. doi: 10.1021/es2016523.
  • Janus, M.; Kusiak, E.; Choina, J.; Ziebro, J.; Morawski, A.W. (2009). Enhanced adsorption of two azo dyes produced by carbon modification of TiO2. Desalination, 249 (1): 359–363. doi: 10.1016/j.desal.2009.04.013.
  • Wang, Q.; Chen, C.; Zhao, D.; Ma, W.; Zhao, J. (2008). Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir, 24 (14): 7338–7345. doi: 10.1021/la800313s.
  • Nguyen-Le, M.T.; Lee, B.K. (2015). High temperature synthesis of interfacial functionalized carboxylate mesoporous TiO2 for effective adsorption of cationic dyes. Chemical Engineering Journal, 281: 20–33. doi: 10.1016/j.cej.2015.06.075.
  • Feng, J.; Chen, J.; Wang, N.; Li, J.; Shi, J.; Yan, W. (2016). Enhanced adsorption capacity of polypyrrole/TiO2 composite modified by carboxylic acid with hydroxyl group. RSC Advances, 6 (48): 42572–42580. doi: 10.1039/C6RA06738G.
  • Ojamäe, L.; Aulin, C.; Pedersen, H.; Käll, P.-O. (2006). IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. Journal of Colloid and Interface Science, 296 (1): 71–78. doi: 10.1016/j.jcis.2005.08.037.
  • Kasar, S.; Kumar, S.; Raut, V.V.; Jeyakumar, S.; Tomar, B.S. (2015). Speciation of citric acid on anatase (TiO2)-water interface and its effect on Eu(III) sorption. Radiochimica Acta, 103 (4): 305–312. doi: 10.1515/ract-2014-2320.
  • Wu, H.; Ma, J.; Zhang, C.; He, H. (2014). Effect of TiO2 calcination temperature on the photocatalytic oxidation of gaseous NH3. Journal of Environmental Sciences, 26 (3): 673–682. doi: 10.1016/S1001-0742(13)60441-6.
  • Kim, L.J.; Jang, J.W.; Park, J.W. (2014). Nano TiO2-functionalized magnetic-cored dendrimer as a photocatalyst. Applied Catalysis B-Environmental Journal, 147: 973–979. doi: 10.1016/j.apcatb.2013.10.024.
  • Yu, H.G.; Xiao, P.; Tian, J.; Wang, F.Z.; Yu, J.G. (2016). Phenylamine-functionalized rGO/TiO2 photocatalysts: spatially separated adsorption sites and tunable photocatalytic selectivity. ACS Applied Materials & Interfaces, 8 (43): 29470–29477. doi: 10.1021/acsami.6b09903.
  • Kheirandish, S.; Ghaedi, M.; Dashtian, K.; Jannesar, R.; Montazerozohori, M.; Pourebrahim, F.; Zare, M.A. (2017). Simultaneous removal of Cd(II), Ni(II), Pb(II) and Cu(II) ions via their complexation with HBANSA based on a combined ultrasound-assisted and cloud point adsorption method using CSG-BiPO4/FePO4 as novel adsorbent: FAAS detection and optimization process. Journal of Colloid and Interface Science, 500: 241–252. doi: 10.1016/j.jcis.2017.03.070.
  • Pourebrahim, F.; Ghaedi, M.; Dashtian, K.; Heidari, F.; Kheirandish, S. (2017). Simultaneous removing of Pb2+ ions and alizarin red S dye after their complexation by ultrasonic waves coupled adsorption process: spectrophotometry detection and optimization study. Ultrasonics Sonochemistry, 35: 51–60. doi: 10.1016/j.ultsonch.2016.09.002.
  • Dashtian, K.; Zare-Dorabei, R. (2017). Synthesis and characterization of functionalized mesoprous SBA-15 decorated with Fe3O4 nanoparticles for removal of Ce(III) ions from aqueous solution: ICP–OES detection and central composite design optimization. Journal of Colloid and Interface Science, 494: 114–123. doi: 10.1016/j.jcis.2017.01.072.
  • Azad, F.N.; Ghaedi, M.; Dashtian, K.; Jamshidi, A.; Hassani, G.; Montazerozohori, M.; Hajati, S.; Rajabi, M.; Bazrafshan, A.A. (2016). Preparation and characterization of an AC–Fe3o4–Au hybrid for the simultaneous removal of Cd2+, Pb2+, Cr3+ and Ni2+ ions from aqueous solution via complexation with 2-((2,4-dichloro-benzylidene)-amino)-benzenethiol: taguchi optimization. RSC Advances, 6 (24): 19780–19791. doi: 10.1039/C6RA01910B.
  • Jamshidi, M.; Ghaedi, M.; Dashtian, K.; Ghaedi, A.M.; Hajati, S.; Goudarzi, A.; Alipanahpour, E. (2016). Highly efficient simultaneous ultrasonic assisted adsorption of brilliant green and eosin B onto ZnS nanoparticles loaded activated carbon: artificial neural network modeling and central composite design optimization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153: 257–267. doi: 10.1016/j.saa.2015.08.024.
  • Nasiri Azad, F.; Ghaedi, M.; Dashtian, K.; Montazerozohori, M.; Hajati, S.; Alipanahpour, E. (2015). Preparation and characterization of MWCNTs functionalized by N-(3-nitrobenzylidene)-N′- trimethoxysilylpropyl-ethane-1,2-diamine for the removal of aluminum(iii) ions via complexation with eriochrome cyanine R: spectrophotometric detection and optimization. RSC Advances, 5 (75): 61060–61069. doi; 10.1039/C5RA08746E.
  • Jamshidi, M.; Ghaedi, M.; Dashtian, K.; Hajati, S. (2015). New ion-imprinted polymer-functionalized mesoporous SBA-15 for selective separation and preconcentration of Cr(iii) ions: modeling and optimization. RSC Advances, 5 (128): 105789–105799. doi: 10.1039/C5RA17873H.
  • Nasiri Azad, F.; Ghaedi, M.; Dashtian, K.; Jamshidi, A.; Hassani, G.; Montazerozohori, M.; Hajati, S.; Rajabi, M.; Bazrafshan, A.A. (2016). Preparation and characterization of an AC-Fe3O4-Au hybrid for the simultaneous removal of Cd2+, Pb2+, Cr3+ and Ni2+ ions from aqueous solution via complexation with 2-((2,4-dichloro-benzylidene)-amino)-benzenethiol: taguchi optimization. RSC Advances, 6 (24): 19780–19791. doi: 10.1039/C6RA01910B.
  • Asfaram, A.; Ghaedi, M.; Dashtian, K.; Ghezelbash, G.R. (2018). Preparation and characterization of Mn0.4Zn0.6Fe2O4 nanoparticles supported on dead cells of yarrowia lipolytica as a novel and efficient adsorbent/biosorbent composite for the removal of azo food dyes: central composite design optimization study. ACS Sustainable Chemistry & Engineering, 6 (4): 4549–4563. doi: 10.1021/acssuschemeng.7b03205.
  • Ghaedi, M.; Azad, F.N.; Dashtian, K.; Hajati, S.; Goudarzi, A.; Soylak, M. (2016). Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO nanorod-loaded activated carbon. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 167: 157–164. doi: 10.1016/j.saa.2016.05.025.
  • Jankovic, I.A.; Saponjic, Z.V.; Comor, M.I.; Nedeljlkovic, J.M. (2009). Surface modification of colloidal TiO2 nanoparticles with bidentate benzene derivatives. Journal of Physical Chemistry C, 113 (29): 12645–12652. doi: 10.1021/jp9013338.
  • Yost, E.C.; Tejedortejedor, M.I.; Anderson, M.A. (1990). INSITU CIR-FTIR CHARACTERIZATION OF SALICYLATE COMPLEXES AT THE GOETHITE AQUEOUS-SOLUTION INTERFACE. Environmental Science & Technology, 24 (6): 822–828. doi: 10.1021/es00076a005.
  • Blinova, N.V.; Stejskal, J.; Trchova, M.; Prokes, J.; Omastova, M. (2007). Polyaniline and polypyrrole: a comparative study of the preparation. European Polymer Journal, 43 (6): 2331–2341. doi: 10.1016/j.eurpolymj.2007.03.045.
  • Jafari, B.; Rahimi, M.R.; Ghaedi, M.; Dashtian, K.; Mosleh, S. (2018). CO2 capture by amine-based aqueous solution containing atorvastatin functionalized mesocellular silica foam in a counter-current rotating packed bed: central composite design modeling. Chemical Engineering Research and Design, 129: 64–74. doi: 10.1016/j.cherd.2017.11.005.
  • Mosleh, S.; Rahimi, M.R.; Ghaedi, M.; Dashtian, K.; Hajati, S. (2018). Sonochemical-assisted synthesis of CuO/Cu2O/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization. Ultrasonics Sonochemistry, 40: 601–610. doi: 10.1016/j.ultsonch.2017.08.007.
  • Mosleh, S.; Rahimi, M.R.; Ghaedi, M.; Dashtian, K.; Hajati, S. (2016). Photocatalytic degradation of binary mixture of toxic dyes by HKUST-1 MOF and HKUST-1-SBA-15 in a rotating packed bed reactor under blue LED illumination: central composite design optimization. RSC Advances, 6 (21): 17204–17214. doi: 10.1039/C5RA24564H.
  • Mousavinia, S.E.; Hajati, S.; Ghaedi, M.; Dashtian, K. (2016). Novel nanorose-like Ce(III)-doped and undoped Cu(II)-biphenyl-4,4-dicarboxylic acid (Cu(II)-BPDCA) MOSs as visible light photocatalysts: synthesis, characterization, photodegradation of toxic dyes and optimization. Physical Chemistry Chemical Physics : PCCP, 18 (16): 11278–11287. doi: 10.1039/c6cp00910g.
  • Ahmad, R.; Mirza, A. (2017). Synthesis of guar gum/bentonite a novel bionanocomposite: isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye. Journal of Molecular Liquids, 249: 805–814. doi: doi: 10.1016/j.molliq.2017.11.082.
  • Ahmad, R.; Mirza, A. (2017). Green synthesis of xanthan gum/methionine-bentonite nanocomposite for sequestering toxic anionic dye. Surfaces & Interfaces, 8: 65–72. doi: 10.1016/j.surfin.2017.05.001.
  • Li, X.Y.; Wang, D.S.; Cheng, G.X.; Luo, Q.Z.; An, J.; Wang, Y.H. (2008). Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Applied Catalysis B-Environmental Journal, 81 (3–4): 267–273. doi: 10.1016/j.apcatb.2007.12.022.
  • Mosleh, S.; Rahimi, M.R.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Wang, S. (2017). Ag3PO4/AgBr/Ag-HKUST-1-MOF composites as novel blue LED light active photocatalyst for enhanced degradation of ternary mixture of dyes in a rotating packed bed reactor. Chemical Engineering and Processing: Process Intensification, 114: 24–38. doi: 10.1016/j.cep.2017.01.009.
  • Mosleh, S.; Rahimi, M.R.; Ghaedi, M.; Dashtian, K.; Hajati, S. (2016). BiPO4/Bi2S3-HKUST-1-MOF as a novel blue light-driven photocatalyst for simultaneous degradation of toluidine blue and auramine-O dyes in a new rotating packed bed reactor: optimization and comparison to a conventional reactor. RSC Advances, 6 (68): 63667–63680. doi: 10.1039/C6RA10385E.
  • Chun, Y.; Sheng, G.Y.; Chiou, C.T.; Xing, B.S. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 38 (17): 4649–4655.
  • Vathyam, R.; Wondimu, E.; Das, S.; Zhang, C.; Hayes, S.; Tao, Z.M.; Asefa, T. (2011). Improving the adsorption and release capacity of organic-functionalized mesoporous materials to drug molecules with temperature and synthetic methods. Journal of Physical Chemistry C, 115 (27): 13135–13150. doi: 10.1021/jp1108587.
  • Yu, J.C.; Yu, J.G.; Ho, W.K.; Jiang, Z.T.; Zhang, L.Z. (2002). Effects of F− doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials, 14 (9): 3808–3816. doi: 10.1021/cm020027c.
  • Yu, J.C.; Yu, J.G.; Ho, W.K.; Zhang, L.Z. (2001). Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem Communications, (19): 1942–1943. doi: 10.1039/b105471f.
  • Grosso, D.; Soler-Illia, G.; Crepaldi, E.L.; Cagnol, F.; Sinturel, C.; Bourgeois, A.; Brunet-Bruneau, A.; Amenitsch, H.; Albouy, P.A.; Sanchez, C. (2003). Highly porous TiO2 anatase optical thin films with cubic mesostructure stabilized at 700 degrees C. Chemistry of Materials, 15 (24): 4562–4570. doi: 10.1021/cm031060h.
  • Yang, H.G.; Zeng, H.C. (2004). Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. Journal of Physical Chemistry B, 108 (11): 3492–3495. doi: 10.1021/jp0377782.
  • Dai, Y.Q.; Cobley, C.M.; Zeng, J.; Sun, Y.M.; Xia, Y.N. (2009). Synthesis of anatase TiO2 nanocrystals with exposed {001} facets. Nano Letters, 9 (6): 2455–2459. doi: 10.1021/nl901181n.
  • Feng, J.T.; Zhu, J.W.; Lv, W.; Li, J.J.; Yan, W. (2015). Effect of hydroxyl group of carboxylic acids on the adsorption of acid red G and methylene blue on TiO2. Chemical Engineering Journal, 269: 316–322. doi: 10.1016/j.cej.2015.01.109.
  • Peng, S.; Wang, S.; Chen, T.; Jiang, S.; Huang, C. (2010). Adsorption kinetics of methylene blue from aqueous solutions onto palygorskite. Acta Geologica Sinica, 80 (2): 236–242. doi: 10.1111/j.1755-6724.2006.tb00236.x.
  • Yao, S.; Lai, H.; Shi, Z. (2012). Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution. Iranian Journal of Environmental Health Science & Engineering, 9 (1): 16. doi: 10.1186/1735-2746-9-16.
  • Zhang, L.Y.; Zhang, W.; Zhou, Z.; Li, C.M. (2016). gamma-Fe2O3 nanocrystals-anchored macro/meso-porous graphene as a highly efficient adsorbent toward removal of methylene blue. Journal of Colloid and Interface Science, 476: 200–205. doi: 10.1016/j.jcis.2016.05.025.
  • Zhan, H.; Jiang, Y.; Ma, Q. (2014). Determination of adsorption characteristics of metal oxide nanomaterials: application as adsorbents. Analytical Letters, 47 (5): 871–884. doi: 10.1080/00032719.2013.850090.
  • Wang, S.; Li, L.; Wu, H.; Zhu, Z.H. (2005). Unburned carbon as a low-cost adsorbent for treatment of methylene blue-containing wastewater. Journal of Colloid and Interface Science, 292 (2): 336–343. doi: 10.1016/j.jcis.2005.06.014.
  • Rao, V.V.B.; Rao, S.R.M. (2006). Adsorption studies on treatment of textile dyeing industrial effluent by flyash. Chemical Engineering Journal, 116 (1): 77–84. doi: 10.1016/j.cej.2005.09.029.
  • Mazaheri, H.; Ghaedi, M.; Hajati, S.; Dashtian, K.; Purkait, M.K. (2015). Simultaneous removal of methylene blue and Pb2+ ions using ruthenium nanoparticle-loaded activated carbon: response surface methodology. RSC Advances, 5 (101): 83427–83435. doi: 10.1039/C5RA06731F.
  • Li, P.H.Y.; Bruce, R.L.; Hobday, M.D. (2015). A pseudo first order rate model for the adsorption of an organic adsorbate in aqueous solution. Journal of Chemical Technology & Biotechnology, 74 (1): 55–59. doi: doi: 10.1002/(SICI)1097-4660(199901)74:1<55::AID-JCTB984>3.0.CO;2-D.
  • Tijani, J.O.; Bankole, M.T.; Muriana, M.; Falana, I.O. (2014). Development of low cost adsorbent from cow horn for the biosorption of Mn (II), Ni (II) and Cd (II) ion from aqueous solution. Research Journal of Applied Sciences Engineering & Technology, 7 (1): 9–17. doi: 10.19026/rjaset.7.213.
  • Wang, N.; Feng, J.; Chen, J.; Wang, J.; Yan, W. (2017). Adsorption mechanism of phosphate by polyaniline/TiO2 composite from wastewater. Chemical Engineering Journal, 316: 33–40.
  • Abdi, S.; Nasiri, M.; Mesbahi, A.; Khani, M.H. (2017). Investigation of uranium (VI) adsorption by polypyrrole. Journal of Hazardous Materials, 332: 132–139. doi: 10.1016/j.jhazmat.2017.01.013.
  • Hossain, M.K.; Pervez, M.F.; Uddin, M.J.; Tayyaba, S.; Mia, M.N.H.; Bashar, M.S.; Jewel, M.K.H.; Haque, M.A.S.; Hakim, M.A.; Khan, M.A. (2018). Influence of natural dye adsorption on the structural, morphological and optical properties of TiO2 based photoanode of dye-sensitized solar cell. Materials Science-Poland, 36 (1): 93–101. doi: 10.1515/msp-2017-0090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.