207
Views
8
CrossRef citations to date
0
Altmetric
Adsorption

Adsorption of triclocarban (TCC) onto fullerene C60 in simulated environmental aqueous conditions

, , , , , , , , & show all
Pages 2759-2772 | Received 12 Jun 2018, Accepted 29 Jan 2019, Published online: 19 Feb 2019

References

  • Chen, X.K.; Kan, A.T.; Tomson, M.B. (2004) Naphthalene adsorption and desorption from aqueous C60 fullerene. Journal of Chemical & Engineering Data, 49: 675. doi:10.1021/je030247m
  • Cheng, X.K.; Kan, A.T.; Tomson, M.B. (2005) Uptake and sequestration of naphthalene and 1,2-dichlorobenzene by C60. Journal of Nano Research, 7: 555. doi:10.1007/s11051-005-5674-z
  • Brant, J.A.; Labile, J.; Bottero, J.Y.; Wiesner, J.Y. (2006) Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir, 22: 3878. doi:10.1021/la053293o
  • Espinasse, B.; Hotze, E.M.; Wiesner, M.R. (2007) Transport and retention of colloidal aggregates of C60 in porous media: effect of organic macromolecules, ionic composition and preparation method. Environmental Science & Technology, 41: 7396. doi:10.1021/es0708767
  • Mauter, M.S.; Elimelech, M. (2008) Environmental applications of carbon-based nanomaterials. Environmental Science & Technology, 42 (16): 5843. doi:10.1021/es8006904
  • Hou, L.; Fortner, J.D.; Wang, X.; Zhang, C.; Wang, L.; Chen, W. (2017) Complex interplay between formation routes and natural organic matter modification controls capabilities of C60 nanoparticles (nC60) to accumulate organic contaminants. Journal of Environmental Sciences, 51: 315. doi:10.1016/j.jes.2016.07.009
  • Wang, L.; Hou, L.; Wang, X.; Chen, W. (2014) Effects of the reparation method and humic acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles. Environmental Science: Processes & Impacts, 16: 1282. doi:10.1039/c3em00596h
  • Huffer, T.; Kah, M.; Hofman, T.; Schmidt, T.C. (2013) How redox conditions and irradiation affect sorption of PAHs by dispersed fullerene. Environmental Science & Technology, 47 (13): 6935. doi:10.1021/es303620c
  • Ion, A.C.; Ion, I.; Culetu, A. (2011) Lead adsorption onto xGnPs in aqueous solutions. Materials Science and Engineering: B, 176 (6): 504. doi:10.1016/j.mseb.2010.07.021
  • Kah, M.; Zhang, X.R.; Hofmann, T. (2014) Sorption behavior of carbon nanotubes: changes induced by functionalization, sonication and natural organic matter. Science of the Total Environment, 497: 133. doi:10.1016/j.scitotenv.2014.07.112
  • Wiesner, M.R.; Hotze, E.A.; Brant, J.A. (2008) B. Espinase, Nanomaterials as possible contaminants: the fullerene example. . Water Science and Technology, 57 (3): 305. doi:10.2166/wst.2008.800
  • Snyder, E.H.; O’Connor, G.A. (2013) Risk assessment of land-applied biosolids borne triclocarban (TCC). Science of the Total Environment, 442: 437. doi:10.1016/j.scitotenv.2012.10.007
  • Snyder, E.H.; O’Connor, G.A.; McCavoy, D.C. (2011) Toxicity and bioaccumulation of bio-solids-borne triclocarban (TCC) in terrestrial organisms. Chemosphere, 82: 460. doi:10.1016/j.chemosphere.2010.09.054
  • Su-Zhen, H.; Holger, M.; Chen-Xu, W. (2014) Aggregation of fullerene (C60) nanoparticle: a molecular study. Chinese Physics B, 23 (4): 048201. doi:10.1088/1674-1056/23/4/048201
  • Zhang, L.; Zhang, Y.; Lin, X.; Yang, K.; Lin, D. (2014) The role of humic acid in stabilizing fullerene (C60) in suspensions. Applied Physics and Engineering, 15 (8): 634.
  • Deguchi, S.; Alargova, R.G.; Tsujii, K. (2001) Stable dispersions of fullerenes C60 in water. Preparation and Characterization of the Langmuir, 17: 6013.
  • Zhou, L.; Zhu, D.; Zhang, S.; Pan, B. (2015) A settling curve modeling method for quantitative description of the dispersion stability of carbon nanotubes in aquatic environments. Journal of Environmental Sciences, 29: 1. doi:10.1016/j.jes.2014.05.054
  • Hyung, H.; Fortner, J.D.; Hughes, J.B.; Kim, J.H. (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environmental Science & Technology, 41: 179. doi:10.1021/es061817g
  • Hyung, H.; Kim, J.-H. (2009) Dispersion of C60 in natural water and removal by conventional drinking water treatment process. Water Research, 43: 2463. doi:10.1016/j.watres.2009.03.011
  • Huffer, T.; Sun, H.; Kubicki, J.D.; Hofmann, T.; Kah, M. (2017) Interactions between aromatic hydrocarbons and functionalized C60 fullerenes – insights from experimental data and molecular modeling. Environmental Science: Nano, 4: 1045. doi:10.1039/C7EN00139H
  • Yang, Q.; Li, X.; Chen, G.; Zhang, J.; Xing, B. (2016) Effect of humic acid on sulfamethazine adsorption by functionalized multi-walled carbon nanotubes in aqueous solution: mechanistic study. RSC Advances, 6: 15184. doi:10.1039/C5RA26913J
  • Senin, R.M.; Ion, I.; Oprea, O.; Vasile, B.; Stoica, R.; Ganea, R.; Ion, A.C. (2018) Sorption of bisphenol A in aqueous solutions of fullerene C60. Revista de Chimie, 69 (6): 1309.
  • Andrievsky, G.V.; Klochkow, V.K.; Bordyuh, A.B.; Dovbeshko, G.J. (2002) Comparative analysis of two aqueous – colloidal solutions of C60 fullerene with help pf FTIR reflectance and UV-Vis spectroscopy. Chemical Physics Letters, 364: 8. doi:10.1016/S0009-2614(02)01305-2
  • Chen, K.L.; Elimelech, M. (2007) Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 309: 126. doi:10.1016/j.jcis.2007.01.074
  • Niu, J.J.; Wang, J.N.; Jiang, Y.; Su, L.F.; Ma, J. (2007) An approach to carbon nanotubes with high surface area and large pore volume. Microporous and Mesoporous Materials, 100: 1–5. doi:10.1016/j.micromeso.2006.10.009
  • Escudero, C.; Macia, F.; Torel, R.; Velasquez, J.L. (2014) Kinetic theory and numerical simulations of two-species coagulation. Kinetic Relative Models, 7 (2): 253. doi:10.3934/krm.2014.7.253
  • Gotovac, S.; Hattori, Y.; Nogoguchi, D.; Miyamoto, J.; Kanamaru, M.; Utsumi, S.; Kanoh, H.; Kaneko, K. (2006) Phenanthrene adsorption from solution on single wall carbon nanotubes. Journal of Physical Chemistry B, 110 (33): 16219. doi:10.1021/jp0611830
  • Huffer, T.; Huichao, S.; Kubicki, J.D.; Sun, H.; Hofmann, T.; Kah, M. (2017) Interactions between aromatic hydrocarbons functionalized C60 fullerene – insights from experimental data and molecular modelling. Environmental Science: Nano, 4: 1045–1053. doi:10.1039/C7EN00139H
  • Keiluweit, M.; Kleber, M. (2009) Molecular level interactions in soils and sediments: the role of aromatic pi-systems. Environmental Science & Technology, 43 (10): 3421. doi:10.1021/es8033044
  • Yang, K.; Xing, B. (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Reviews, 110: 5989. doi:10.1021/cr100059s
  • Zou, M.Y.; Zhang, J.D.; Chen, J.W.; Li, X.H. (2012) Simulating adsorption of organic pollutants on finite single walled carbon nanotubes in water. Environmental Science & Technology, 46 (16): 8887. doi:10.1021/es301370f
  • Ion, I.; Culetu, A.; Costa, J.; Luca, C. Ion, A. C. (2010) Polyvinyl chloride-based membranes of 3,7,11-tris (2-pyridylmethyl)-3,7,11,17-tetraazabicyclo [11.3.1] heptadeca-1(17),13,15-triene as a Pb(II)-selective sensor, Desalination, 259 (38–43).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.