149
Views
1
CrossRef citations to date
0
Altmetric
Membrane Separations

Transport of liquid and supercritical CO2 and selected organic solvents through surface modified mesoporous γ-alumina and titania membranes

, &
Pages 2098-2111 | Received 27 Oct 2018, Accepted 11 Mar 2019, Published online: 03 Apr 2019

References

  • Supekar, S.D.; Skerlos, S.J. (2014) Supercritical carbon dioxide in microelectronics manufacturing: marginal cradle-to-grave emissions. Procedia CIRP, 15: 461–466. doi:10.1016/j.procir.2014.06.061
  • Hasegawa, T.; Maruo, S., Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures, International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan, pp. 12–15, 2007. doi:10.1208/pt0801012
  • Deshpande, P.B.; Kumar, G.A.; Kumar, A.R.; Shavi, G.V.; Karthik, A.; Reddy, M.S.; Udupa, N. (2011) Supercritical fluid technology: concepts and pharmaceutical applications. PDA Journal of Pharmaceutical Science and Technology / PDA, 65: 333–344. May-Jun doi:10.5731/pdajpst.2011.00717
  • Reverchon, E.; Adami, R.; Cardea, S.; Della Porta, G. (2009) Supercritical fluids processing of polymers for pharmaceutical and medical applications. The Journal of Supercritical Fluids, 47: 484–492. doi:10.1016/j.supflu.2008.10.001
  • Kazarian, S.;. (2000) Polymer processing with supercritical fluids. Polymer Science Series CC/C of Vysokomolekuliarnye Soedineniia, 42: 78–101.
  • Cooper, A.I.;. (2000) Polymer synthesis and processing using supercritical carbon dioxide. Journal of Materials Chemistry, 10: 207–234. doi:10.1039/a906486i
  • Patil, V.E.;. (2006) Membrane technology for the regeneration of supercritical carbon dioxide. Eindhoven: Technische Universiteit Eindhoven, 109. doi:10.6100/IR612972
  • Wall, Y.; Ompe Aime, M.; Braun, G.; Brunner, G. (2010) Gas transport through ceramic membranes under super-critical conditions. Desalination, 250: 1056–1059. doi:10.1016/j.desal.2009.09.107
  • Verkerk, A.W.; Goetheer, E.L.V.; van Den Broeke, L.J.P.; Keurentjes, J.T.F. (2002) Permeation of carbon dioxide through a microporous silica membrane at subcritical and supercritical conditions. Langmuir, 18: 6807–6812. doi:10.1021/la011838i
  • Bothun, G.D.; Ilias, S.; Nelson, K. (2006) Sorption and hydration effects on liquid carbon dioxide transport through mesoporous gamma-alumina and titania membranes. Journal of Membrane Science, 281: 149–155. doi:10.1016/j.memsci.2006.03.031
  • Donald, A.B.; Nield, A. (2006) Convection in Porous Media, Third; Springer: New York, NY.
  • Guizard, C.; Ayral, A.; Julbe, A. (2002) Potentiality of organic solvents filtration with ceramic membranes. A comparison with polymer membranes. Desalination, 147: 275–280. doi:10.1016/S0011-9164(02)00552-0
  • Yu, C.-H.; Huang, C.-H.; Tan, C.-S. (2012) A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research, 12: 745–769. doi:10.4209/aaqr.2012.05.0132
  • Persichilli, A.K.M.; Zdankiewicz, E.; Held, T., Supercritical CO2 power cycle developments and commercialization: why SCO2 can displace steam, Power-Gen India & Central Asia Conference, Santa Clara, CA, USA, 2012.
  • Yoo, J.R.; Sung, J.H.; Park, K.H. (2005) Separation of radioactive waste oil by membrane with scCO2. Transactions of the Korean Nuclear Society Autumn Meeting Busan, Korea. PP. 1CD-ROM.
  • Chowdhury, S.R.; Schmuhl, R.; Keizer, K.; Elshof, J.E.; Blank, D.H. (2003) Pore size and surface chemistry effects on the transport of hydrophobic and hydrophilic solvents through mesoporous y-alumina and silica MCM-48. Journal of Membrane Science, 225: 177–186. doi:10.1016/j.memsci.2003.07.018
  • García, A.; Álvarez, S.; Riera, F.; Álvarez, R.; Coca, J. (2005) Water and hexane permeate flux through organic and ceramic membranes: effect of pretreatment on hexane permeate flux. Journal of Membrane Science, 253: 139–147. doi:10.1016/j.memsci.2004.11.030
  • Chen, X.; Gao, X.; Fu, K.; Qiu, M.; Xiong, F.; Ding, D.; Cui, Z.; Wang, Z.; Fan, Y.; Drioli, E. (2018) Tubular hydrophobic ceramic membrane with asymmetric structure for water desalination via vacuum membrane distillation process. Desalination, 443: 212–220. doi:10.1016/j.desal.2018.05.027
  • Kujawa, J.; Cerneaux, S.; Kujawski, W.; Knozowska, K. (2017) Hydrophobic ceramic membranes for water desalination. Applied Sciences, 7: 402. doi:10.3390/app7040402
  • Fang, H.; Gao, J.F.; Wang, H.T.; Chen, C.S. (2012) Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. Journal of Membrane Science, 403–404: 41–46. doi:10.1016/j.memsci.2012.02.011
  • Ahmad, N.A.; Leo, C.P.; Ahmad, A.L.; Ramli, W.K.W. (2015) Membranes with great hydrophobicity: A review on preparation and characterization. Separation & Purification Reviews, 44: 109–134. doi:10.1080/15422119.2013.848816
  • Bothun, G.D.; Peay, K.; Ilias, S. (2007) Role of tail chemistry on liquid and gas transport through organosilane-modified mesoporous ceramic membranes. Journal of Membrane Science, 301: 162–170. doi:10.1016/j.memsci.2007.06.011
  • Bruno Pintault, A.A.;. (2009) Hydrophobic inorganic membranes for water/gas separation. Journal of Porous Materials, 16 (1): 73–79. doi:10.1007/s10934-007-9170-y
  • Picard, C.; Larbot, A.; Guida-Pietrasanta, F.; Boutevin, B.; Ratsimihety, A. (2001) Grafting of ceramic membranes by fluorinated silanes: hydrophobic features. Separation and Purification Technology, 25: 65–69. doi:10.1016/S1383-5866(01)00091-0
  • Kujawa, J.; Cerneaux, S.; Koter, S.; Kujawski, W. (2014) Highly efficient hydrophobic titania ceramic membranes for water desalination. ACS Applied Materials & Interfaces, 6: 14223–14230. doi:10.1021/am5035297
  • Menke, R.;, Fabrication of a full-ceramic hydrophobic membrane for water desalination, Chemical engineering Bachelor assignment, University of Twente, 2015.
  • Leger, C.; Lira, H.L.; Paterson, R. (1996) Preparation and properties of surface modified ceramic membranes. Part III. Gas permeation of 5 nm alumina membranes modified by trichloro-octadecylsilane. Journal of Membrane Science, 120: 187–195. doi:10.1016/0376-7388(96)00143-3
  • Kujawa, J.; Cerneaux, S.; Kujawski, W. (2015) Highly hydrophobic ceramic membranes applied to the removal of volatile organic compounds in pervaporation. Chemical Engineering Journal, 260: 43–54. doi:10.1016/j.cej.2014.08.092
  • Van Gestel, T.; Van der Bruggen, B.; Buekenhoudt, A.; Dotremont, C.; Luyten, J.; Vandecasteele, C.; Maes, G. (2003) Surface modification of γ-Al2O3/TiO2 multilayer membranes for applications in non-polar organic solvents. Journal of Membrane Science, 224: 3–10. doi:10.1016/S0376-7388(03)00132-7
  • Boddu, A.;, Separation and recovery of liquid carbon dioxide from process solutions using UF/NF membranes,” M.S. Thesis, North Carolina A&T State University, 2001.
  • Hossain, M.T.Z.;, Transport of liquid and supercritical CO2 and selected organic solvents through surface modified mesoporous membranes, M.S. Thesis, North Carolina A&T State University, 2009.
  • Cerneaux, S.; Strużyńska, I.; Kujawski, W.M.; Persin, M.; Larbot, A. (2009) Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. Journal of Membrane Science, 337: 55–60. doi:10.1016/j.memsci.2009.03.025
  • Picard, C.; Larbot, A.; Tronel-Peyroz, E.; Berjoan, R. (2004) Characterisation of hydrophilic ceramic membranes modified by fluoroalkylsilanes into hydrophobic membranes. Solid State Sciences, 6: 605–612. doi:10.1016/j.solidstatesciences.2004.03.017
  • Kujawski, W.; Krajewska, S.; Kujawski, M.; Gazagnes, L.; Larbot, A.; Persin, M. (2007) Pervaporation properties of fluoroalkylsilane (FAS) grafted ceramic membranes. Desalination, 205: 75–86. doi:10.1016/j.desal.2006.04.042
  • Krajewski, S.R.; Kujawski, W.; Bukowska, M.; Picard, C.; Larbot, A. (2006) Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions. Journal of Membrane Science, 281: 253–259. doi:10.1016/j.memsci.2006.03.039
  • Pradip Munshi, S.B.;. (2009) Supercritical CO2: a twenty-first century solvent for the chemical industry. Current Science, 97 (1): 63–72.
  • Arkles, B.;. (2011) Hydrophobicity, Hydrophilicity and Silane Surface Modification; Gelest Inc: Morrisville.
  • Ahmad, N.; Leo, C.; Ahmad, A.; Ramli, W. (2015) Membranes with great hydrophobicity: a review on preparation and characterization. Separation & Purification Reviews, 44: 109–134. doi:10.1080/15422119.2013.848816
  • Hendren, Z.D.; Brant, J.; Wiesner, M.R. (2009) Surface modification of nanostructured ceramic membranes for direct contact membrane distillation. Journal of Membrane Science, 331: 1–10. doi:10.1016/j.memsci.2008.11.038
  • Rodgers, V.; Sparks, R. (1993) Effects of solution properties on polarization redevelopment and flux in pressure pulsed ultrafiltration. Journal of Membrane Science, 78: 163–180. doi:10.1016/0376-7388(93)85258-X
  • Hyatt, J.A.;. (1984) Liquid and supercritical carbon dioxide as organic solvents. The Journal of Organic Chemistry, 49: 5097–5101. doi:10.1021/jo00200a016
  • Hu, H.; Tang, G.; Niu, D. (2016) Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery. Scientific Reports, 6: 27274. doi:10.1038/srep27274
  • Dafinov, A.; Garcia-Valls, R.; Font, J. (2002) Modification of ceramic membranes by alcohol adsorption. Journal of Membrane Science, 196: 69–77. doi:10.1016/S0376-7388(01)00575-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.