124
Views
4
CrossRef citations to date
0
Altmetric
Precipitation

Efficiency of electrostatic precipitation of NiO nanoparticles dispersed by atomization

ORCID Icon & ORCID Icon
Pages 2400-2409 | Received 17 Dec 2018, Accepted 29 May 2019, Published online: 09 Jun 2019

References

  • Parker, K.;. The Range and Application of Electrostatic Precipitators. In Electrical Operation of Electrostatic Precipitators; Parker, K., Ed.; The Institution of Electrical Engineers: London, UK, 2007; pp 1–20.
  • Paschoalino, M. P.; Marcone, G. P. S.; Jardim, W. F. Os Nanomateriais E a Questão Ambiental. Quím. Nova. 2010, 33(2), 421–430. DOI: 10.1590/S0100-40422010000200033.
  • Maher, B. A.; Ahmed, I. A. M.; Karloukovski, V.; Maclaren, D. A.; Foulds, P. G.; Allsop, D.; Mann, D. M. A.; Jardón, R. T.; Garciduenas, L. C. (2016) Magnetite Pollution Nanoparticles in the Human Brain. Proceedings of the National Academy of Sciences of the United States of America (PNAS). DOI: 10.1073/pnas.1605941113.
  • Kulkarni, P.; Namiki, N.; Otani, Y.; Biswas, P. Charging of Particles in Unipolar Coronas Irradiated by In-Situ Soft X-Rays: Enhancement of Capture Efficiency of Ultrafine Particles. J. Aerosol Sci. 2002, 33, 1279–1296. DOI: 10.1016/S0021-8502(02)00067-8.
  • Kim, J.-H.; Lee, H.-S.; Kim, -H.-H.; Ogata, A. Electrospray with Electrostatic Precipitator Enhances Fine Particles Collection Efficiency. J. Electrost. 2010, 68, 305–310. DOI: 10.1016/j.elstat.2010.03.002.
  • Domat, M.; Kruis, F. E.; Fernandez-Diaz, J. M. Investigations of the Effect of Electrode Gap on the Performance of a Corona Charger Having Separated Corona and Charging Zones. J. Aerosol Sci. 2014, 68, 1–13. DOI: 10.1016/j.jaerosci.2013.08.017.
  • Alonso, M.; Huang, C. H. High-Efficiency Electrical Charger for Nanoparticles. J. Nanoparticle Res. 2015, 17, 332. DOI: 10.1007/s11051-015-3137-8.
  • Chen, T.-M.; Tsai, C.-H.; Yan, S.-Y.; Li, S.-N. An Efficient Wet Electrostatic Precipitator for Removing Nanoparticles, Submicron and Micron-Sized Particles. Sep. Purif. Technol. 2014, 136, 27–35. DOI: 10.1016/j.seppur.2014.08.032.
  • Kim, H. J.; Han, B.; Kim, Y. J.; Yoa, S. J. Characteristics of an Electrostatic Precipitator for Submicron Particles Using Non-Metallic Electrodes and Collection Plates. J. Aerosol Sci. 2010, 41, 987–997. DOI: 10.1016/j.jaerosci.2010.08.001.
  • Kim, H. J.; Han, B.; Kim, Y. J.; Oda, T.; Won, H. Submicrometer Particle Removal Indoors by a Novel Electrostatic Precipitator with High Clean Air Delivery Rate, Low Ozone Emissions, and Carbon Fiber Ionizer. Indoor Air. 2013, 23, 369–378. DOI: 10.1111/ina.12037.
  • Zhuang, Y.; Kim, Y. J.; Lee, T. G.; Biswas, P. Experimental and Theoretical Studies of Ultra-Fine Particle Behaviour in Electrostatic Precipitators. J. Electrostat. 2000, 48, 245–260. DOI: 10.1016/S0304-3886(99)00072-8.
  • Morawska, L.; Agranovski, V.; Ristovski, Z.; Jamriska, M. Effect of Face Velocity and the Nature of Aerosol on the Collection of Submicrometer Particles by Electrostatic Precipitator. Indoor Air. 2002, 12, 129–137. DOI: 10.1034/j.1600-0668.2002.09136.x.
  • Hinds, W. C.;. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; John Wiley: New York, USA, 1998.
  • Loria, H.; Pereira-Almao, P.; Scott, C. E. Determination of Agglomeration Kinetics in Nanoparticle Dispersions. Ind. Eng. Chem. Res. 2011, 50, 8529–8535. DOI: 10.1021/ie200135r.
  • Zhou, D.; Ji, Z.; Jiang, X.; Dunphy, D. R.; Brinker, J.; Keller, A. A. Influence of Material Properties on TiO2 Nanoparticle Agglomeration. PLoS ONE. 2013, 8(11), e81239. DOI: 10.1371/journal.pone.0081239.
  • Kusters, K. A.; Pratsinis, S. E.; Thoma, S. G.; Smith, D. M. Ultrasonic Fragmentation of Agglomerate Powders. Chem. Eng. Sci. 1993, 48(24), 4119–4127. DOI: 10.1016/0009-2509(93)80258-R.
  • Ivanov, A. N.;. Ultrasonic Dispersion of Al–AlN and Al2O3 Nanopowder Agglomerates and of Nanostructured AlOOH Particles. Russ. Phys. J. 2012, 54(12), 1413–1417. DOI: 10.1007/s11182-012-9763-z.
  • Ghadimi, A.; Metselaar, I. H. The Influence of Surfactant and Ultrasonic Processing on Improvement of Stability, Thermal Conductivity and Viscosity of Titania Nanofluid. Exp. Therm. Fluid Sci. 2013, 51, 1–9. DOI: 10.1016/j.expthermflusci.2013.06.001.
  • Knoop, C.; Todorova, Z.; Tomas, J.; Udo, F. Agglomerate Fragmentation in High-Intensity Acoustic Standing Wave Fields. Powder Technol. 2016, 291, 214–222. DOI: 10.1016/j.powtec.2015.12.038.
  • Nenu, R. K. T.; Yoshida, H.; Fukui, K.; Yamamoto, T. Separation Performance of Sub-Micron Silica Particles by Electrical Hydrocyclone. Powder Technol. 2009, 196, 147–155. DOI: 10.1016/j.powtec.2009.07.011.
  • Boskovic, L.; Altman, I. S.; Agranovski, I. E.; Braddock, R. D.; Myojo, T.; Choi, M. Influence of Particle Shape on Filtration Processes. Aerosol Sci. Technol. 2005, 39, 1184–1190. DOI: 10.1080/02786820500442410.
  • Boskovic, L.; Agranovski, I. E.; Altman, I. S.; Braddock, R. D. Filter Efficiency as a Function of Nanoparticle Velocity and Shape. J. Aerosol Sci. 2008, 39, 635–644. DOI: 10.1016/j.jaerosci.2008.03.003.
  • Xia., X.; Tu, J.; Mai, Y.; Chen, R.; Wang, X.; Gu, C.; Zhao, X. Graphene Sheet/Porous NiO Hybrid Film for Supercapacitor Applications. Chem. Eur. J. 2011, 17(39), 10898–10905. DOI: 10.1002/chem.201100727.
  • Zhao, J.; Tan, Y.; Su, K.; Zhao, J.; Yang, C.; Sang, L.; Lu, H.; Chen, J. A Facile Homogeneous Precipitation Synthesis of NiO Nanosheets and Their Applications in Water Treatment. Appl. Surf. Sci. 2015, 337, 111–117. DOI: 10.1016/j.apsusc.2015.02.071.
  • Channu, V. S. R.; Holze, R.; Rambabu, B. Synthesis and Characterization of NiO Nanoparticles for Electrochemical Applications. Colloids Surf., A. 2012, 414, 204–208. DOI: 10.1016/j.colsurfa.2012.08.023.
  • BEN AMOR, M.; Boukhachem, A.; Boubaker, K.; Amlouk, M. Structural, Optical and Electrical Studies on Mg-Doped NiO Thin Films for Sensitivity Applications. Mater. Sci. Semicond. Process. 2014, 27, 994–1006. DOI: 10.1016/j.mssp.2014.08.008.
  • Dean, J. A.;. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill: New York, USA, 1999.
  • Young, K. F.; Frederikse, H. P. R. Apud LIDE, R. D. (2005) CRC Handbook of Chemistry and Physics, 2128–2136; CRC Press: Boca Raton, USA, 1973.
  • Riehle, C.;. Fundamental Operation of an Electrostatic Precipitator. In Gas Cleaning in Demanding Applications; Seville, J. P. K., Ed.; Blackie Academic & Professional: London, UK, 1997; Vols. 193-228, pp 21–37.
  • Institute of Electrical and Electronics Engineers – IEEE. Recommended International Standard for Dimensionless Parameters Used in Electrohydrodynamics. IEEE Trans. Dielectr. Electr. Insul. 2003, 10(1), 3–6. DOI:10.1109/TDEI.2003.1176545.
  • Oliveira, A. E.; Guerra, V. G. Influence of Particle Concentration and Residence Time on the Efficiency of Nanoparticulate Collection by Electrostatic Precipitation. J. Electrostat. 2018, 96, 1–9. DOI: 10.1016/j.elstat.2018.08.006.
  • Oliveira, A. E.; Guerra, V. G. Effect of Low Gas Velocity on the Nanoparticle Collection Performance of an Electrostatic Precipitator. Sep. Sci. Technol. 2018. DOI: 10.1080/01496395.2018.1527855.
  • Huang, S. H.; Chen, C. C. Ultrafine Aerosol Penetration through Electrostatic Precipitators. Environ. Sci. Technol. 2002, 36, 4625–4632. DOI: 10.1021/es011157+.
  • Podliński, J.; Dekowski, J.; Mizeraczyk, J.; Brocilo, D.; Chang, J. S. Electrohydrodynamic Gas Flow in a Positive Polarity Wire-Plate Electrostatic Precipitator and the Related Dust Particle Collection Efficiency. J. Electrost. 2006, 64, 259–262. DOI: 10.1016/j.elstat.2005.06.00.
  • Fujishima, H.; Morita, Y.; Okubo, M.; Yamamoto, T. Numerical Simulation of Three-Dimensional Electrohydrodynamics of Spiked-Electrode Electrostatic Precipitators. IEEE Trans. Dielectr. Electr. Insul. 2006, 13(1), 160–167. DOI: 10.1109/TDEI.2006.1593414.
  • Chun, Y. N.; Chang, J. S.; Berezin, A. A.; Mizeraczyk, J. Numerical Modeling of near Corona Wire Electrohydrodynamic Flow in a Wire-Plate Electrostatic Precipitator. IEEE Trans. Dielectr. Electr. Insul. 2007, 14(1), 119–124. DOI: 10.1109/TDEI.2007.302879.
  • White, H. J.;. Industrial Electrostatic Precipitation; Addison-Wesley: Reading, UK, 1963.
  • Lawless, P. A.;. Particle Charging Bounds, Symmetry Relations, and an Analytic Charging Rate Model for the Continuum Regime. J. Aerosol Sci. 1996, 27, 191–215. DOI: 10.1016/0021-8502(95)00541-2.
  • Takashima, K.; Kohno, H.; Katatani, A.; Kurita, H.; Mizuno, A. Two-Stage Electrostatic Precipitator Using Induction Charging. J. Phys. D: Appl. Phys. 2018, 51, 17. DOI: 10.1088/1361-6463/aab4bf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.