184
Views
10
CrossRef citations to date
0
Altmetric
Adsorption

Adsorptive removal of fluoride using polymer-modified ceria nanoparticles: determination of equilibrium, kinetic and thermodynamic parameters

, &
Pages 2933-2947 | Received 16 May 2019, Accepted 23 Aug 2019, Published online: 01 Sep 2019

References

  • Masciangoli, T.; Zhang, W. Environmental Technologies. Environ. Sci. Technol. 2003, 37, 102–108.
  • Liao, X. P.; Shi, B. Adsorption of Fluoride on Zirconium (iv)-impregnated Collagen Fiber. Environ. Sci. Technol. 2005, 39, 4628–4632. DOI: 10.1021/es0479944.
  • WHO. Guidelines for Drinking Water Quality, 1, 2nd; Geneva: 1993.
  • Tomar, V.; Kumar, D. A Critical Study on Efficiency of Different Materials for Fluoride Removal from Aqueous Media. Chem. Cent. J. 2013, 7, 51. DOI: 10.1186/1752-153X-7-51.
  • Dhillon, A.; Nair, M.; Bhargava, S. K.; Kumar, D. Excellent Fluoride Decontamination and Antibacterial Efficacy of Fe–Ca–Zr Hybrid Metal Oxide Nanomaterial. J. Colloid Interface Sci. 2015, 457, 289–297. DOI: 10.1016/j.jcis.2015.06.045.
  • Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Defluoridation of Drinking Water Using Adsorption Processes. J. Hazard. Mater. 2013, 248–249(6), 1–19. DOI: 10.1016/j.jhazmat.2012.12.043.
  • Shen, J.; Mkongo, G.; Abbt-Braun, G.; Ceppi, S. L.; Richards, B. S.; Schäfer, A. I. Renewable Energy Powered Membrane Technology: Fluoride Removal in a Rural Community in Northern Tanzania. Sep. Purif. Technol. 2015, 149, 349–361. DOI: 10.1016/j.seppur.2015.05.027.
  • Daifullah, A. A. M.; Yakout, S. M.; Elreefy, S. A. Adsorption of Fluoride in Aqueous Solutions Using KMnO4-modified Activated Carbon Derived from Steam Pyrolysis of Rice Straw. J. Hazard. Mater. 2007, 147, 633–643. DOI: 10.1016/j.jhazmat.2007.01.062.
  • Maliyekkal, S. M.; Shukla, S.; Philip, L.; Nambi, I. M. Enhanced Fluoride Removal from Drinking Water by Magnesia-amended Activated Alumina Granules. Chem. Eng. J. 2008, 140, 183–192. DOI: 10.1016/j.cej.2007.09.049.
  • Shan, Y.; Guo, H. Fluoride Adsorption on Modified Natural Siderite: Optimization and Performance. Chem. Eng. J. 2013, 223, 183–191. DOI: 10.1016/j.cej.2013.03.023.
  • Goswami, D.; Das, K. A. Removal of Fluoride from Drinking Water Using a Modified Fly Ash Adsorbent. J. Sci. Ind. Res. India. 2006, 65, 77–79.
  • Viswanathan, N.; Prabhu, S. M.; Meenakshi, S. Development of Amine Functionalized Co-polymeric Resins for Selective Fluoride Sorption. J. Fluor. Chem. 2013, 153, 143–150. DOI: 10.1016/j.jfluchem.2013.04.002.
  • Onyango, M. S.; Kojima, Y.; Aoyi, O.; Bernardo, E. C.; Matsuda, H. Adsorption Equilibrium Modeling and Solution Chemistry Dependence of Fluoride Removal from Water by Trivalent-cation-exchanged Zeolite F-9. J. Colloid Interface Sci. 2004, 279, 341–350. DOI: 10.1016/j.jcis.2004.06.038.
  • Erdem, E.; Karapinar, N.; Donat, R. The Removal of Heavy Metal Cations by Natural Zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. DOI: 10.1016/j.jcis.2004.08.028.
  • Yu, X.; Tong, S.; Ge, M.; Zuo, J. Removal of Fluoride from Drinking Water by Cellulose@hydroxyapatite Nanocomposites. Carbohydr. Polym. 2013, 92(1), 269–275. DOI: 10.1016/j.carbpol.2012.09.045.
  • Babaeivelni, K.; Khodadoust, A. P. Adsorption of Fluoride onto Crystalline Titanium Dioxide: Effect of pH, Ionic Strength, and Co-existing Ions. J. Colloid Interface Sci. 2013, 394, 419–427. DOI: 10.1016/j.jcis.2012.11.063.
  • Wang, X.; Guo, Y.; Yang, L.; Han, M.; Zhao, J. Nanomaterials as Sorbents to Remove Heavy Metal Ions in Wastewater Treatment. J. Environ. Anal. Toxicol. 2012, 2, 154. DOI: 10.4172/2161-0525.1000154.
  • Jayarathna, L.; Bandara, A.; Ng, W. J.; Weerasooriya, R. Fluoride Adsorption on γ − Fe2O3 Nanoparticles. J. Environ. Health Sci. Eng. 2015, 13, 54. DOI: 10.1186/s40201-015-0210-2.
  • Lee, G.; Chen, C.; Yang, S.; Ahn, W. Enhanced Adsorptive Removal of Fluoride Using Mesoporous Alumina. Microporous Mesoporous Mater. 2010, 127(1–2), 152–156. DOI: 10.1016/j.micromeso.2009.07.007.
  • Tokunaga, S.; Haron, M. J.; Wasay, S. A.; Wong, K. F.; Laosangthum, K.; Uchiumi, A. Removal of Fluoride Ions from Aqueous Solutions by Multivalent Metal Compounds. Int. J. Environ. Stud. 1995, 48(1), 17–28. DOI: 10.1080/00207239508710973.
  • Wang, J.; Xu, W.; Chen, L.; Jia, Y.; Wang, L.; Huang, X.-J.; Liu, J. Excellent Fluoride Removal Performance by CeO2–ZrO2 Nanocages in Water Environment. Chem. Eng. J. 2013, 231, 198–205. DOI: 10.1016/j.cej.2013.07.022.
  • Meenakshi, S.; Sundaram, C. S.; Sukumar, R. Enhanced Fluoride Sorption by Mechanochemically Activated Kaolinites. J. Hazard. Mater. 2008, 153, 164–172. DOI: 10.1016/j.jhazmat.2007.08.031.
  • Chen, L.; Wang, T.-J.; Wu, H.-X.; Jin, Y.; Zhang, Y.; Dou, X.-M. Optimization of a Fe-Al-Ce Nano-adsorbent Granulation Process that Used Spray Coating in a Fluidized Bed for Fluoride Removal from Drinking Water. Powder Technol. 2011, 206, 291–296. DOI: 10.1016/j.powtec.2010.09.033.
  • Liu, H.; Deng, S. B.; Li, Z. J.; Yu, G.; Huang, J. Preparation of Al–Ce Hybrid Adsorbent and Its Application for Defluoridation of Drinking Water. J. Hazard. Mater. 2010, 179, 424–430. DOI: 10.1016/j.jhazmat.2010.03.021.
  • Gehrke, I.; Geiser, A.; Somborn-Schulz, A. Innovations in Nanotechnology for Water Treatment. Nanotechnol. Sci. Appl. 2015, 8, 1–17. DOI: 10.2147/NSA.S43773.
  • Ali, N.;. Innovative Technologies for Minimizing Waste Water. Int. J. Trend Sci. Res. Dev. 2017, 1(6), 69–75. DOI: 10.31142/ijtsrd.
  • Zhang, Q.; Xu, R.; Xu, P.; Chen, R.; He, Q.; Zhong, J.; Gu, X. Performance Study of ZrO2 Ceramic Micro-filtration Membranes Used in Pretreatment of DMF Wastewater. Desalination. 2014, 346, 1–8. DOI: 10.1016/j.desal.2014.05.006.
  • Beyene, H. D.; Ambaye, T. G. Application of Sustainable Nanocomposites for Water Purification Process. In: Inamuddin, Thomas S., Kumar Mishra R., Asiri A. (eds) Sustainable Polymer Composites and Nanocomposites, Springer, Cham, 2019; pp 387–412.
  • Huang, J. X.; Kaner, R. B. A General Chemical Route to Polyaniline Nanofibers. J. Am. Chem. Soc. 2004, 126(3), 851–855. DOI: 10.1021/ja0371754.
  • Chiouand, N. R.; Epstein, A. J. Polyaniline Nanofibers Prepared by Dilute Polymerization. Adv. Mater. 2005, 17, 1679. DOI: 10.1002/adma.200401000.
  • Goller, M. I.; Barthet, C.; McCarthy, G. P.; Corradi, R.; Newby, B. P.; Wilson, S. A.; Armes, S. P.; Luk, S. Y. Synthesis and characterization of surface-aminated polypyrrole–silica nanocomposites.Colloid. Polym. Sci. 1998, 276, 1010.
  • Riede, A.; Helmstedt, J.; Riede, V.; Zemek, J.; Stejskal, J.In situ polymerized polyaniline films. 2. Dispersion polymerization of aniline in the presence of colloidal silica. Langmuir. 2000, 16, 6240-6244. DOI: 10.1021/la991414c.
  • Reda, S. M.; Al-Ghannam, S. M. Synthesis and Electrical Properties of Polyaniline Composite with Silver Nanoparticles. Adv. Mater. Phys. Chem. 2012, 2(2), 75–81. DOI: 10.4236/ampc.2012.22013.
  • Purohit, R. D.; Sharma, B. P.; Pillai, K. T.; Tyagi, A. K. Ultrafine Ceria Powders via Glycine-nitrate Combustion. Mater. Res. Bull. 2001, 36, 2711–2721. DOI: 10.1016/S0025-5408(01)00762-0.
  • Taleghani, H. G.; Aleahmad, M.; Eisazadeh, H. Preparation and Characterization of Polyaniline Nanoparticles Using Various Solutions. World Appl. Sci. J. 2009, 6(12), 1607–1611.
  • Stumm, W.;. Chemistry of the Solid-Water Interface; Wiley/Interscience: New York, 1992.
  • Ciprari, D. L.;. Thesis Mechanical Characterization of Polymer Nanocomposites and the Role of Interphase, in Materials Science and Engineering. Georgia Institute of Technology; USA: Atlanta, 2004.
  • Pitsa, D.; Danikas, M. G. Interfaces Features in Polymer Nanocomposites: A Review of Proposed Models. Nano: Brief Rep. Rev. 2011, 6(6), 497–508. DOI: 10.1142/S1793292011002949.
  • Schadler, L. S.; Brinson, L. C.; Sawyer, W. G. Polymer Nanocomposites: A Small Part of the Story. J. Mater. 2007, 59(3), 53–60.
  • Todd, M.; Shi, F. G. Complex Permittivity of Composite Systems: A Comprehensive Interphase Approach. IEEE Trans. Dielectr. Electr. Insul. 2005, 12(3), 601–611. DOI: 10.1109/TDEI.2005.1453466.
  • Petrovic, Z. S.; Javni, I.; Wasson, A.; Banhegyi, G. Structure and Properties of Polyurethane-Silica Nanocomposites. J. Appl. Polym. Sci. 2000, 76, 133–151. DOI: 10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.0.CO;2-K.
  • Rong, M. Z.; Zhang, M. Q.; Pan, S. L.; Lehmann, B.; Friedrich, K. Analysis of the Interfacial Interactions in Polypropylene/Silica Nanocomposites. Polym. Int. 2003, 53, 176–183. DOI: 10.1002/pi.1307.
  • Kumar, E.; Selvarajan, P.; Muthuraj, D. Preparation and Characterization of Polyaniline/cerium Dioxide (ceo2) Nanocomposite via in Situ Polymerization. J. Mater. Sci. 2012, 47(20), 7148–7156. DOI: 10.1007/s10853-012-6655-0.
  • Mayakaduwa, S. S.; Kumarathilaka, P.; Herath, I.; Ahmad, M.; Al-Wabel, M.; Ok, Y. S.; Usman, A.; Abduljabbar, A.; Vithanage, M. Equilibrium and Kinetic Mechanisms of Woody Biochar on Aqueous Glyphosate Removal. Chemosphere. 2015, 144, 2516–2521. DOI: 10.1016/j.chemosphere.2015.07.080.
  • Weber, W. J., Jr.; Morris, J. C.; Sanit, J. Kinetics of Adsorption on Carbon from Solution. J. Sanitary Eng. Div. 1963, 89, 31–38.
  • Tanzifi, M.; Yaraki, M. T.; Kiadehi, A. D.; Hosseini, S. H.; Olazar, M.; Bhati, A. K.; Agarwal, S.; Gupta, V. K.; Kazemi, A. Adsorption of Amido Black 10B from Aqueous Solution Using polyaniline/SiO2 Nanocomposite: Experimental Investigation and Artificial Neural Network Modelling. J. Colloid Interface Sci. 2017, 510, 246–261. DOI: 10.1016/j.jcis.2017.09.055.
  • Kumar, A.; Kumar, S.; Gupta, D. V. Adsorption of Phenol and 4-nitrophenol on Granular Activated Carbon in Basal Salt Medium: Equilibrium and Kinetics. J. Hazard. Mater. 2007, 147, 155–166. DOI: 10.1016/j.jhazmat.2006.12.062.
  • Kango, S.; Kumar, R. Low-cost Magnetic Adsorbent for as (III) Removal from Water: Adsorption Kinetics and Isotherms. Environ. Monit. Assess. 2016, 188(1), 60. DOI: 10.1007/s10661-015-5077-2.
  • Erdoğan, S.; Başar, C. A.; Önal, Y. Particle Size Effect of Raw Material on the Pore Structure of Carbon Support and Its Adsorption Capability. Part. Sci. Technol. 2017, 35(3), 330–337. DOI: 10.1080/02726351.2016.1154911.
  • Fierro, V.; Torne´-Ferna´ndez, V.; Montane´, D.; Celzard, A. Adsorption of Phenol onto Activated Carbons Having Different Textural and Surface Properties. Microporous Mesoporous Mater. 2008, 111, 276–284. DOI: 10.1016/j.micromeso.2007.08.002.
  • Biswas, K.; Debnath, S.; Ghosh, U. C. Physicochemical Aspects on Fluoride Adsorption for Removal from Water by Synthetic Hydrous Iron(III) - Chromium(III) Mixed Oxide. Sep. Sci. Technol. 2010, 45(4), 472–485. DOI: 10.1080/01496390903526667.
  • Cengeloglu, Y.; Kir, E.; Ersoz, M. Removal of Fluoride from Aqueous Solution by Using Red Mud. Sep. Purif. Technol. 2002, 28(1), 81–86. DOI: 10.1016/S1383-5866(02)00016-3.
  • Tempkin, M. I.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalyst. Acta Phys. Chim. USSR. 1940, 12, 327–356.
  • Aharoni, C.; Ungarish, M. Kinetics of Activated Chemisorption. Part 2, Theoretical Models. J. Chem. Soc. Faraday Trans. 1977, 73, 456–464. DOI: 10.1039/f19777300456.
  • Gunay, A.; Arslankaya, E.; Tosun, I. Lead Removal from Aqueous Solution by Natural and Pretreated Clinoptilolite: Adsorption Equilibrium and Kinetics. J. Hazard. Mater. 2007, 146, 362–371. DOI: 10.1016/j.jhazmat.2006.12.034.
  • Dabrowski, A.;. Adsorption—from Theory to Practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. DOI: 10.1016/S0001-8686(00)00082-8.
  • Dada, A. O.; Olalekan, A. P.; Olatunya, A. M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. IOSR J. Appl. Chem. 2012, 3(1), 38–45. DOI: 10.9790/5736-0313845.
  • Kumar, E.; Bhatnagar, A.; Ji, M.; Jung, W.; Lee, S. H.; Kim, S. J.; Lee, G.; Song, H.; Choi, J. Y.; Yang, J. S.; et al. Defluoridation from Aqueous Solutions by Granular Ferric Hydroxide (GFH). Water Res. 2009, 43, 490–498. DOI: 10.1016/j.watres.2008.10.031.
  • Chen, N.; Zhang, Z.; Feng, C.; Li, M.; Zhu, D.; Chen, R.; Sugiura, N. An Excellent Fluoride Sorption Behavior of Ceramic Adsorbent. J. Hazard. Mater. 2010, 183(1–3), 460–465. DOI: 10.1016/j.jhazmat.2010.07.046.
  • Maliyekkal, S. M.; Anshup,; Antony, K. R.; Pradeep, T. High Yield Combustion Synthesis of Nanomagnesia and Its Application for Fluoride Removal. Sci. Total Environ. 2010, 408(10), 2273–2282. DOI: 10.1016/j.scitotenv.2010.01.062.
  • Chang, -C.-C.; Huang, Y.-H.; Chen, H.-T. Adsorption Thermodynamic and Kinetic Studies of Fluoride Aqueous Solution Treated with Waste Iron Oxide. Sep. Sci. Technol. 2010, 45(3), 370–379. DOI: 10.1080/01496390903484826.
  • Saha, P.; Chaudhari, S. Insight into Adsorption Thermodynamics. Mizutani Tadashi (Ed.)Thermodynamic; INTECH Open Access Publisher UK, 2011; pp 349–364.
  • Gupta, V. K.;. Equlibrium Uptake, Sorption Dynamics, Process Development and Column Operations for the Removal of Copper and Nickel from Aqueous Solution and Waste Water Using Activated Slag, a Low Cost Adsorbent. Ind. Eng. Chem. Res. 1998, 37, 192–202. DOI: 10.1021/ie9703898.
  • Nayak, B.; Samant, A.; Patel, R.; Misra, P. K. Comprehensive Understanding of the Kinetics and Mechanism of Fluoride Removal over a Potent Nanocrystalline Hydroxyapatite Surface. ACS Omega. 2017, 2(11), 8118–8128. DOI: 10.1021/acsomega.7b01318.
  • Azari, A.; Kalantary, R. R.; Ghanizadeh, G.; Kakavandi, B.; Farzadkia, M.; Ahmadi, E. Iron-silver Oxide Nanoadsorbent Synthesized by Co-precipitation Process for Fluoride Removal from Aqueous Solution and Its Adsorption Mechanism. RSC Adv. 2015, 5, 87377‒87391. DOI: 10.1039/C4RA14244F.
  • Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Effect of Functionalized Graphene on the Physical Properties of Linear Low Density Polyethylene Nanocomposites. Polym. Test. 2012, 31, 31–38. DOI: 10.1016/j.polymertesting.2011.09.007.
  • Chigondo, M.; Paumo, H. K.; Bhaumik, M.; Pillay, K.; Maity, A. Hydrous CeO2-Fe3O4 Decorated Polyaniline Fibers Nanocomposite for Effective Defluoridation of Drinking Water. J. Colloid Interface Sci. 2018, 532, 500–516. DOI: 10.1016/j.jcis.2018.07.134.
  • Minju, N.; Venkat Swaroop, K.; Haribabu, K.; Sivasubramanian, V.; Senthil Kumar, P. Removal of Fluoride from Aqueous Media by Magnesium Oxide-coated Nanoparticles. Desalin. Water Treat. 2015, 53(11), 2905–2914. DOI: 10.1080/19443994.2013.868837.
  • Karthikeyan, M.; Satheesh Kumar, K. K.; Elango, K. P. Batch Sorption Studies on the Removal of Fluoride Ions from Water Using Eco-friendly Conducting Polymer/bio-polymer Composites. Desalination. 2011, 267, 49–56. DOI: 10.1016/j.desal.2010.09.005.
  • Chen, J.; Shu, C.; Wang, N.; Feng, J.; Maa, H.; Yan, W. Adsorbent Synthesis of polypyrrole/TiO2 for Effective Fluoride Removal from Aqueous Solution for Drinking Water Purification: Adsorbent Characterization and Adsorption Mechanism. J. Colloid Interface Sci. 2017, 495, 44–52. DOI: 10.1016/j.jcis.2017.01.084.
  • Jokar, M.; Foroutani, R.; Safaralizadeh, H.; Farhadi, K. Synthesis and Characterization of Polyaniline/Fe3O4 Magnetic Nanocomposite as Practical Approach for Fluoride Removal Process. Annu. Res. Rev. Biol. 2014, 4(21), 3262–3273. DOI: 10.9734/ARRB/2014/9108.
  • Mahvi, A.; Heibati, B.; Mesdaghinia, A. Fluoride Adsorption by Pumice from Aqueous Solutions. J. Chem. 2012, 9(4), 1843–1853. DOI: 10.1155/2012/581459.
  • Rao, C. N. R.; Karthikeyan, J. Removal of Fluoride from Water by Adsorption onto Lanthanum Oxide. Water Air Soil Pollut. 2012, 223, 1101–1114. DOI: 10.1007/s11270-011-0928-0.
  • Raul, P. K.; Devi, R. R.; Umlong, I. M.; Banerjee, S.; Singh, L.; Purkait, M. Removal of Fluoride from Water Using Iron Oxide-hydroxide Nanoparticles. J. Nanosci. Nanotechnol. 2012, 12(5), 3922–3930. DOI: 10.1166/jnn.2012.5751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.