362
Views
16
CrossRef citations to date
0
Altmetric
Electrocoagulation

Removal of Reactive Red 120 dye from wastewater using electrocoagulation: optimization using multivariate approach, economic analysis, and sludge characterization

, &
Pages 3412-3426 | Received 24 Mar 2019, Accepted 04 Oct 2019, Published online: 17 Oct 2019

References

  • Du, C.; Xue, Y.; Wu, Z.; Wu, Z. Microwave-assisted One-step Preparation of Macadamia Nut Shell-based Activated Carbon for Efficient Adsorption of Reactive Blue. New J. Chem. 2017, 41(24), 15373–15383. DOI: 10.1039/C7NJ03208K.
  • Dalvand, A.; Gholami, M.; Joneidi, A.; Mahmoodi, N. M. Dye Removal, Energy Consumption and Operating Cost of Electrocoagulation of Textile Wastewater as a Clean Process. Clean–Soil Air Water. 2011, 39(7), 665–672. DOI: 10.1002/clen.201000233.
  • Meighan, M.; MacNeil, J.; Falconer, R. Determining the Solubility Product of Fe (OH) 3: An Equilibrium Study with Environmental Significance. J. Chem. Educ. 2008, 85(2), 254. DOI: 10.1021/ed085p254.
  • Tak, B.-Y.; Tak, B.-S.; Kim, Y.-J.; Park, Y.-J.; Yoon, Y.-H.; Min, G.-H. Optimization of Color and COD Removal from Livestock Wastewater by Electrocoagulation Process: Application of Box–Behnken Design (BBD). J. Ind. Eng. Chem. 2015, 28, 307–315. DOI: 10.1016/j.jiec.2015.03.008.
  • Bassala, H. D.; Dedzo, G. K.; Bememba, C. B. N.; Seumo, P. M. T.; Dazie, J. D.; Nanseu-Njiki, C. P.; Ngameni, E. Investigation of the Efficiency of a Designed Electrocoagulation Reactor: Application for Dairy Effluent Treatment. Process Saf. Environ. Prot. 2017, 111, 122–127. DOI: 10.1016/j.psep.2017.07.002.
  • Shankar, R.; Singh, L.; Mondal, P.; Chand, S. Removal of COD, TOC, and Color from Pulp and Paper Industry Wastewater through Electrocoagulation. Desalin. Water Treat. 2014, 52(40–42), 7711–7722. DOI: 10.1080/19443994.2013.831782.
  • Thakur, C.; Srivastava, V. C.; Mall, I. D. Electrochemical Treatment of a Distillery Wastewater: Parametric and Residue Disposal Study. Chem. Eng. J. 2009, 148(2–3), 496–505. DOI: 10.1016/j.cej.2008.09.043.
  • Boudjema, N.; Drouiche, N.; Abdi, N.; Grib, H.; Lounici, H.; Pauss, A.; Mameri, N. Treatment of Oued El Harrach River Water by Electrocoagulation Noting the Effect of the Electric Field on Microorganisms. J. Taiwan Inst. Chem. Eng. 2014, 45(4), 1564–1570. DOI: 10.1016/j.jtice.2013.10.006.
  • Verma, A. K.;. Treatment of Textile Wastewaters by Electrocoagulation Employing Fe-Al Composite Electrode. J. Water Process Eng. 2017, 20, 168–172. DOI: 10.1016/j.jwpe.2017.11.001.
  • Sahu, O.; Rao, D. G.; Gopal, R.; Tiwari, A.; Pal, D. Treatment of Wastewater from Sugarcane Process Industry by Electrochemical and Chemical Process: Aluminum (metal and Salt). J. Water Process Eng. 2017, 17, 50–62. DOI: 10.1016/j.jwpe.2017.03.005.
  • Myllymäki, P.; Lahti, R.; Romar, H.; Lassi, U. Removal of Total Organic Carbon from Peat Solution by Hybrid method—Electrocoagulation Combined with Adsorption. J. Water Process Eng. 2018, 24, 56–62. DOI: 10.1016/j.jwpe.2018.05.008.
  • Pandiarajan, A.; Kamaraj, R.; Vasudevan, S. Enhanced Removal of Cephalosporin Based Antibiotics (CBA) from Water by One-pot Electrosynthesized Mg (OH) 2: A Combined Theoretical and Experimental Study to Pilot Scale. New J. Chem. 2017, 41(11), 4518–4530. DOI: 10.1039/C6NJ04075F.
  • Daneshvar, N.; Oladegaragoze, A.; Djafarzadeh, N. Decolorization of Basic Dye Solutions by Electrocoagulation: An Investigation of the Effect of Operational Parameters. J. Hazard. Mater. 2006, 129(1–3), 116–122. DOI: 10.1016/j.jhazmat.2005.08.033.
  • Daneshvar, N.; Sorkhabi, H. A.; Kasiri, M. Decolorization of Dye Solution Containing Acid Red 14 by Electrocoagulation with a Comparative Investigation of Different Electrode Connections. J. Hazard. Mater. 2004, 112(1–2), 55–62. DOI: 10.1016/j.jhazmat.2004.03.021.
  • Eyvaz, M.; Kirlaroglu, M.; Aktas, T. S.; Yuksel, E. The Effects of Alternating Current Electrocoagulation on Dye Removal from Aqueous Solutions. Chem. Eng. J. 2009, 153(1–3), 16–22. DOI: 10.1016/j.cej.2009.05.028.
  • Mao, X.; Hong, S.; Zhu, H.; Lin, H.; Wei, L.; Gan, F. Alternating Pulse Current in Electrocoagulation for Wastewater Treatment to Prevent the Passivation of Al Electrode. J. Wuhan Univ. Technol.Mater. Sci. Ed. 2008, 23(2), 239–241. DOI: 10.1007/s11595-006-2239-7.
  • Chenna, M.; Messaoudi, K.; Drouiche, N.; Lounici, H. Study and Modeling of the Organophosphorus Compound Degradation by Photolysis of Hydrogen Peroxide in Aqueous Media by Using Experimental Response Surface Design. J. Ind. Eng. Chem. 2016, 33, 307–315. DOI: 10.1016/j.jiec.2015.10.016.
  • Taheri, M.; Moghaddam, M. R. A.; Arami, M. Optimization of Acid Black 172 Decolorization by Electrocoagulation Using Response Surface Methodology. Iran. J. Environ. Health Sci. Eng. 2012, 9(1), 23. DOI: 10.1186/1735-2746-9-23.
  • Datta, D.; Kumar, S. Modeling Using Response Surface Methodology and Optimization Using Differential Evolution of Reactive Extraction of Glycolic Acid. Chem. Eng. Commun. 2015, 202(1), 59–69. DOI: 10.1080/00986445.2013.828605.
  • Ferreira, S. C.; Bruns, R.; Ferreira, H.; Matos, G.; David, J.; Brandao, G.; Da Silva, E. P.; Portugal, L.; Dos Reis, P.; Souza, A. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta. 2007, 597(2), 179–186. DOI: 10.1016/j.aca.2007.07.011.
  • Nair, A. T.; Makwana, A. R.; Ahammed, M. M. The Use of Response Surface Methodology for Modelling and Analysis of Water and Wastewater Treatment Processes: A Review. Water Sci. Technol. 2014, 69(3), 464–478. DOI: 10.2166/wst.2013.733.
  • Lundstedt, T.; Seifert, E.; Abramo, L.; Thelin, B.; Nyström, Å.; Pettersen, J.; Bergman, R. Experimental Design and Optimization. Chemom. Intell. Lab. Syst. 1998, 42(1–2), 3–40. DOI: 10.1016/S0169-7439(98)00065-3.
  • Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikström, C.; Wold, S. Design of Experiments; Principles and Applications, Learn ways AB: Stockholm, 2000.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta. 2008, 76(5), 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  • Esbensen, K. H.; Guyot, D.; Westad, F.; Houmoller, L. P. Multivariate Data Analysis: In Practice: An Introduction to Multivariate Data Analysis and Experimental Design; Oslo, Norway: Camo Process AS, 2002.
  • Eschenauer, H.; Koski, J.; Osyczka, A. Multicriteria Design Optimization: Procedures and Applications; Berlin, Heidelberg: Springer Science & Business Media, 2012.
  • Demim, S.; Drouiche, N.; Aouabed, A.; Benayad, T.; Dendene-Badache, O.; Semsari, S. Cadmium and Nickel: Assessment of the Physiological Effects and Heavy Metal Removal Using a Response Surface Approach by L. Gibba. Ecol. Eng. 2013, 61, 426–435. DOI: 10.1016/j.ecoleng.2013.10.016.
  • Shojaei, S.; Shojaei, S.; Sasani, M. The Efficiency of Eliminating Direct Red 81 by Zero-valent Iron Nanoparticles from Aqueous Solutions Using Response Surface Model (RSM). Model. Earth Syst. Environment. 2017, 3(1), 27. DOI: 10.1007/s40808-017-0287-y.
  • Khorram, A. G.; Fallah, N. Treatment of Textile Dyeing Factory Wastewater by Electrocoagulation with Low Sludge Settling Time: Optimization of Operating Parameters by RSM. J. Environ. Chem. Eng. 2018, 6(1), 635–642. DOI: 10.1016/j.jece.2017.12.054.
  • Murugan, A. A.; Ramamurthy, T.; Subramanian, B.; Kannan, C. S.; Ganesan, M. Electrocoagulation of Textile Effluent: RSM and ANN Modeling. Int. J. Chem. Reactor Eng. 2009, 7, 1. DOI: 10.2202/1542-6580.1942.
  • Shah, A. R.; Tahir, H.; Ullah, H. M. K.; Adnan, A. Optimization of Electrocoagulation Process for the Removal of Binary Dye Mixtures Using Response Surface Methodology and Estimation of Operating Cost. Open J. Appl. Sci. 2017, 7(09), 458. DOI: 10.4236/ojapps.2017.79034.
  • Srivastava, V. C.; Patil, D.; Srivastava, K. K. Parameteric Optimization of Dye Removal by Electrocoagulation Using Taguchi Methodology. Int. J. Chem. Reactor Eng. 2011, 9, 1. DOI: 10.1515/1542-6580.2299.
  • Bansal, S.; Kushwaha, J. P.; Sangal, V. K. Electrochemical Treatment of Reactive Black 5 Textile Wastewater: Optimization, Kinetics, and Disposal Study. Water Environ. Res. 2013, 85(12), 2294–2306. DOI: 10.2175/106143013x13807328848414.
  • Mook, W.; Aroua, M.; Szlachta, M.; Lee, C. Optimisation of Reactive Black 5 Dye Removal by Electrocoagulation Process Using Response Surface Methodology. Water Sci. Technol. 2017, 75(4), 952–962. DOI: 10.2166/wst.2016.563.
  • Saeed, M. O.; Azizli, K.; Isa, M. H.; Bashir, M. J. Application of CCD in RSM to Obtain Optimize Treatment of POME Using Fenton Oxidation Process. J. Water Process Eng. 2015, 8, e7–e16. DOI: 10.1016/j.jwpe.2014.11.001.
  • Zhang, F.; Yediler, A.; Liang, X.; Kettrup, A. Ozonation of the Purified Hydrolyzed Azo Dye Reactive Red 120 (CI). J. Environ. Sci. Health A. 2002, 37(4), 707–713. DOI: 10.1081/ESE-120003248.
  • Dasgupta, J.; Singh, M.; Sikder, J.; Padarthi, V.; Chakraborty, S.; Curcio, S. Response Surface-optimized Removal of Reactive Red 120 Dye from Its Aqueous Solutions Using Polyethyleneimine Enhanced Ultrafiltration. Ecotoxicol. Environ. Saf. 2015, 121, 271–278. DOI: 10.1016/j.ecoenv.2014.12.041.
  • Absalan, G.; Asadi, M.; Kamran, S.; Sheikhian, L.; Goltz, D. M. Removal of Reactive Red-120 and 4-(2-pyridylazo) Resorcinol from Aqueous Samples by Fe3O4 Magnetic Nanoparticles Using Ionic Liquid as Modifier. J. Hazard. Mater. 2011, 192(2), 476–484. DOI: 10.1016/j.jhazmat.2011.05.046.
  • Paul, J.; Rawat, K.; Sarma, K.; Sabharwal, S. Decoloration and Degradation of Reactive Red-120 Dye by Electron Beam Irradiation in Aqueous Solution. Appl. Radiat. Isot. 2011, 69(7), 982–987. DOI: 10.1016/j.apradiso.2011.03.009.
  • Demarchi, C. A.; Campos, M.; Rodrigues, C. A. Adsorption of Textile Dye Reactive Red 120 by the chitosan–Fe (iii)-crosslinked: Batch and Fixed-bed Studies. J. Environ. Chem. Eng. 2013, 1(4), 1350–1358. DOI: 10.1016/j.jece.2013.10.005.
  • Association, A. P. H.; Association, A. W. W.; Federation, W. P. C.; Federation, W. E. Standard Methods for the Examination of Water and Wastewater; Washington: American Public Health Association, 1915.
  • El‐Dein, A. M.; Libra, J.; Wiesmann, U. Cost Analysis for the Degradation of Highly Concentrated Textile Dye Wastewater with Chemical Oxidation H2O2/UV and Biological Treatment. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2006, 81(7), 1239–1245. DOI: 10.1002/jctb.1531.
  • Bilińska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S. Coupling of Electrocoagulation and Ozone Treatment for Textile Wastewater Reuse. Chem. Eng. J. 2019, 358, 992–1001. DOI: 10.1016/j.cej.2018.10.093.
  • Rodrigues, C. S.; Madeira, L. M.; Boaventura, R. A. Optimization and Economic Analysis of Textile Wastewater Treatment by photo-Fenton Process under Artificial and Simulated Solar Radiation. Ind. Eng. Chem. Res. 2013, 52(37), 13313–13324. DOI: 10.1021/ie401301h.
  • Ali Shah, S. F.; Shah, A. K.; Mehdi, A.; Memon, A. A.; Harijan, K.; Ali, Z. M., Analysis and Treatment of Industrial Wastewater through Chemical Coagulation-adsorption process-A Case Study of Clariant Pakistan Limited. In AIP Conference Proceedings 4, AIP: 2012; Vol. 1453, pp 353–358.
  • Uttar Pradesh Power Corporation Limited, India: Tariff Details. 2018.
  • Daneshvar, N.; Ayazloo, M.; Khataee, A.; Pourhassan, M. Biodegradation of the Textile Dye Malachite Green by Microalgae Cosmarium Sp. Int. J. Sci. High Technol. Environ. Sci. 2005, 1–5.
  • Mollah, M. Y.; Pathak, S. R.; Patil, P. K.; Vayuvegula, M.; Agrawal, T. S.; Gomes, J. A.; Kesmez, M.; Cocke, D. L. Treatment of Orange II Azo-dye by Electrocoagulation (EC) Technique in a Continuous Flow Cell Using Sacrificial Iron Electrodes. J. Hazard. Mater. 2004, 109(1–3), 165–171. DOI: 10.1016/j.jhazmat.2004.03.011.
  • Pi, K.-W.; Xiao, Q.; Zhang, H.-Q.; Xia, M.; Gerson, A. R. Decolorization of Synthetic Methyl Orange Wastewater by Electrocoagulation with Periodic Reversal of Electrodes and Optimization by RSM. Process Saf. Environ. Prot. 2014, 92(6), 796–806. DOI: 10.1016/j.psep.2014.02.008.
  • Golder, A.; Hridaya, N.; Samanta, A.; Ray, S. Electrocoagulation of Methylene Blue and Eosin Yellowish Using Mild Steel Electrodes. J. Hazard. Mater. 2005, 127(1–3), 134–140. DOI: 10.1016/j.jhazmat.2005.06.032.
  • Song, S.; He, Z.; Qiu, J.; Xu, L.; Chen, J. Ozone Assisted Electrocoagulation for Decolorization of CI Reactive Black 5 in Aqueous Solution: An Investigation of the Effect of Operational Parameters. Sep. Purif. Technol. 2007, 55(2), 238–245. DOI: 10.1016/j.seppur.2006.12.013.
  • Mohsen Nourouzi, M.; Chuah, T. G.; Thomas, S. Y. C. Optimisation of Reactive Dye Removal by Sequential Electrocoagulation–Flocculation Method: Comparing ANN and RSM Prediction. Water Sci. Technol. 2011, 63(5), 984–994. DOI: 10.2166/wst.2011.280.
  • Butler, E.; Yung-Tse, H.; Ruth Yu-Li, Y.; Ahmad, M. S. A. Electrocoagulation in Wastewater Treatment. Water. 2011, 3, 495–525. DOI: 10.3390/w3020495.
  • Pirkarami, A.; Olya, M. E. Removal of Dye from Industrial Wastewater with an Emphasis on Improving Economic Efficiency and Degradation Mechanism. J. Saudi Chem. Soc. 2017, 21, S179–S186. DOI: 10.1016/j.jscs.2013.12.008.
  • Peng, X.; Ma, X.; Lin, Y.; Guo, Z.; Hu, S.; Ning, X.; Cao, Y.; Zhang, Y. Co-pyrolysis between Microalgae and Textile Dyeing Sludge by TG–FTIR: Kinetics and Products. Energy Conversion Manage. 2015, 100, 391–402. DOI: 10.1016/j.enconman.2015.05.025.
  • Kamsonlian, S.; Suresh, S.; Majumder, C.; Chand, S. Characterization of Banana and Orange Peels: Biosorption Mechanism. Int. J. Sci. Technol. Manage. 2011, 2(4), 1–7.
  • Lykidou, S.; Karanikas, E.; Nikolaidis, N.; Tsatsaroni, E. Synthesis, Characterization and Ultrafiltration of Reactive Dyes. Application by Exhaustion And/or Ink-jet printing—II. Text. Res. J. 2016, 87(6), 694–707 0040517516636004.
  • Casillas, H. A. M.; Cocke, D. L.; Gomes, J. A.; Morkovsky, P.; Parga, J. R.; Peterson, E.; Garcia, C. Electrochemistry behind Electrocoagulation Using Iron Electrodes. ECS Trans. 2007, 6(9), 1–15.
  • Körbahti, B. K.; Artut, K.; Geçgel, C.; Özer, A. Electrochemical Decolorization of Textile Dyes and Removal of Metal Ions from Textile Dye and Metal Ion Binary Mixtures. Chem. Eng. J. 2011, 173(3), 677–688. DOI: 10.1016/j.cej.2011.02.018.
  • Mahesh, S.; Garg, K. K.; Srivastava, V. C.; Mishra, I. M.; Prasad, B.; Mall, I. D. Continuous Electrocoagulation Treatment of Pulp and Paper Mill Wastewater: Operating Cost and Sludge Study. RSC Adv. 2016, 6(20), 16223–16233. DOI: 10.1039/C5RA27486A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.