229
Views
6
CrossRef citations to date
0
Altmetric
Mixing

Computational fluid dynamics and experimental investigations on liquid–liquid mass transfer in T-type microchannels with different mixing channel barrier shapes

&
Pages 3502-3516 | Received 12 Oct 2018, Accepted 04 Dec 2019, Published online: 24 Dec 2019

References

  • Ansari, M. A.; Kim, K.-Y.; Anwar, K.; Kim, S. M. A Novel Passive Micromixer Based on Unbalanced Splits and Collisions of Fluid Streams. J. Micromech. Microeng. 2010, 20(5), 055007. DOI: 10.1088/0960-1317/20/5/055007.
  • Jeong, H. H.; Issadore, D.; Lee, D. Recent Developments in Scale-up of Microfluidic Emulsion Generation via Parallelization, Korean J. Chem. Eng. 2016, 33(6), 1757. DOI: 10.1007/s11814-016-0041-6
  • Huebner, A.; Sharma, S.; Srisa-Art, M.; Hollfelder, F.; Edel, J. B. Microdroplets: A Sea of Applications? Lab. Chip. 2008, 8(8), 1244. DOI: 10.1039/b806405a.
  • Tamagawa, O.; Muto, A. Development of Cesium Ion Extraction Process Using a Slug Flow Microreactor. Chem. Eng. J. 2011, 167(2), 700. DOI: 10.1016/j.cej.2010.11.002.
  • Huang, C.-T.; Li, P.-N.; Pai, C.-Y.; Leu, T.-S.; Jen, C.-P. Design and Simulation of a Microfluidic Blood-Plasma Separation Chip Using Microchannel Structures. Sep. Sci. Technol. 2010, 45(1), 42. DOI: 10.1080/01496390903402125.
  • TeGrotenhuis, W. E.; Cameron, R. J.; Butcher, M. G.; Martin, P. M.; Wegeng, R. S. Microchannel Devices for Efficient Contacting of Liquids in Solvent Extraction. Sep. Sci. Technol. 1999, 34(6–7), 951. DOI: 10.1080/01496399908951075.
  • Assmann, N.; von Rohr, P. R. Extraction in Microreactors: Intensification by Adding an Inert Gas Phase. Chem. Eng. Process. 2011, 50(8), 822. DOI: 10.1016/j.cep.2011.05.009.
  • Sato, M.; Goto, M. Note: Gas Absorption in Water with Microchannel Devices. Sep. Sci. Technol. 2004, 39(13), 3163. DOI: 10.1081/SS-200028929.
  • Singh, K.; Renjith, A.; Shenoy, K. Liquid–Liquid Extraction in Microchannels and Conventional Stage-wise Extractors: A Comparative Study. Chem. Eng. Process. 2015, 98, 95. DOI: 10.1016/j.cep.2015.10.013.
  • Tang, J.; Zhang, X.; Cai, W.; Wang, F. Liquid–Liquid Extraction Based on Droplet Flow in a Vertical Microchannel. Exp. Therm. Fluid. Sci. 2013, 49, 185. DOI: 10.1016/j.expthermflusci.2013.04.017.
  • Yang, L.; Zhao, Y.; Su, Y.; Chen, G. An Experimental Study of Copper Extraction Characteristics in a T‐Junction Microchannel. Chem. Eng. Technol. 2013, 36(6), 985. DOI: 10.1002/ceat.v36.6.
  • Kashid, M.; Harshe, Y.; Agar, D. W. Liquid− Liquid Slug Flow in a Capillary: An Alternative to Suspended Drop or Film Contactors. Ind. Eng. Chem. Res. 2007, 46(25), 8420. DOI: 10.1021/ie070077x.
  • Namasivayam, C.; Kavitha, D. Removal of Congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, an Agricultural Solid Waste. Dyes. Pigm. 2002, 54(1), 47. DOI: 10.1016/S0143-7208(02)00025-6.
  • Shakeel, F.; Haq, N.; Alanazi, F. K.; Alsarra, I. A. Removal of Alizarin Red from Aqueous Solution by Ethyl Acetate Green Nanoemulsions. Water. Sci. Technol. 2014, 70(9), 1569. DOI: 10.2166/wst.2014.400.
  • Kakavandi, F. H.; Rahimi, M.; Baniamer, M.; Mahdavi, H. R. Performance Evaluation of Alizarin Extraction from Aqueous Solutions in a Microfluidic System. Chem. Pap. 2017, 71(12), 2521. DOI: 10.1007/s11696-017-0248-y.
  • Kuban, P.; Berg, J.; Dasgupta, P. K. Vertically Stratified Flows in Microchannels. Computational Simulations and Applications to Solvent Extraction and Ion Exchange. Anal. Chem. 2003, 75(14), 3549. DOI: 10.1021/ac0340713.
  • Seo, H.-S.; Kim, Y.-J. A Study on the Mixing Characteristics in A Hybrid Type Microchannel with Various Obstacle Configurations. Mater. Res. Bull. 2012, 47(10), 2948. DOI: 10.1016/j.materresbull.2012.04.138.
  • Nguyen, N.-T.; Wu, Z. Micromixers—A Review. J. Micromech. Microeng. 2004, 15(2), R1. DOI: 10.1088/0960-1317/15/2/R01.
  • Das, D.; Duraiswamy, S.; Yi, Z.; Chan, V.; Yang, C. Continuous Droplet-Based Liquid-Liquid Extraction of Phenol from Oil. Sep. Sci. Technol. 2015, 50(7), 1023. DOI: 10.1080/01496395.2014.978466.
  • Aoki, N.; Umei, R.; Yoshida, A.; Mae, K. Design Method for Micromixers considering Influence of Channel Confluence and Bend on Diffusion Length. Chem. Eng. J. 2011, 167(2), 643. DOI: 10.1016/j.cej.2010.08.084.
  • Sathuluri, R. R.; Kurniawan, Y. S.; Kim, J. Y.; Maeki, M.; Iwasaki, W.; Morisada, S.; Kawakita, H.; Miyazaki, M.; Ohto, K. Droplet-based Microreactor System for Stepwise Recovery of Precious Metal Ions from Real Metal Waste with Calix[4]arene Derivatives. Sep. Sci. Technol. 2017, 53(8), 1261. DOI: 10.1080/01496395.2017.1366518.
  • Hossain, S.; Ansari, M.; Kim, K.-Y. Evaluation of the Mixing Performance of Three Passive Micromixers. Chem. Eng. J. 2009, 150(2), 492. DOI: 10.1016/j.cej.2009.02.033.
  • Aoki, N.; Fukuda, T.; Maeda, N.; Mae, K. Design of Confluence and Bend Geometry for Rapid Mixing in Microchannels. Chem. Eng. J. 2013, 227, 198. DOI: 10.1016/j.cej.2012.03.061.
  • Tsaoulidis, D.; Dore, V.; Angeli, P.; Plechkova, N. V.; Seddon, K. R. Dioxouranium (VI) Extraction in Microchannels Using Ionic Liquids. Chem. Eng. J. 2013, 227, 151. DOI: 10.1016/j.cej.2012.08.064.
  • Mondal, P.; Ghosh, S.; Das, G.; Ray, S. Phase Inversion and Mass Transfer during Liquid–Liquid Dispersed Flow through Mini-channel. Chem. Eng. Process. 2010, 49(10), 1051. DOI: 10.1016/j.cep.2010.08.006.
  • Tsaoulidis, D.; Angeli, P. Effect of Channel Size on Mass Transfer during Liquid–Liquid Plug Flow in Small Scale Extractors. Chem. Eng. J. 2015, 262, 785. DOI: 10.1016/j.cej.2014.10.012.
  • Woitalka, A.; Kuhn, S.; Jensen, K. F. Scalability of Mass Transfer in Liquid–Liquid Flow. Chem. Eng. Sci. 2014, 116(1), 1–8. DOI: 10.1016/j.ces.2014.04.036.
  • Eiamsa-Ard, S.;. Study on Thermal and Fluid Flow Characteristics in Turbulent Channel Flows with Multiple Twisted Tape Vortex Generators. Int. Commun. Heat. Mass. 2010, 37(6), 644. DOI: 10.1016/j.icheatmasstransfer.2010.02.004.
  • Rahimi, M.; Shabanian, S. R.; Alsairafi, A. A. Experimental and CFD Studies on Heat Transfer and Friction Factor Characteristics of a Tube Equipped with Modified Twisted Tape Inserts. Chem. Eng. Process. 2009, 48(3), 762. DOI: 10.1016/j.cep.2008.09.007.
  • Zhao, Y.; Chen, G.; Yuan, Q. Liquid–Liquid Two‐phase Mass Transfer in the T‐junction Microchannels. AIChE. J. 2007, 53(12), 3042. DOI: 10.1002/(ISSN)1547-5905.
  • Su, Y.; Zhao, Y.; Chen, G.; Yuan, Q. Liquid–Liquid Two-phase Flow and Mass Transfer Characteristics in Packed Microchannels. Chem. Eng. Sci. 2010, 65(13), 3947. DOI: 10.1016/j.ces.2010.03.034.
  • Azimi, N.; Rahimi, M.; Abdollahi, N. Using Magnetically Excited Nanoparticles for Liquid–Liquid Two-phase Mass Transfer Enhancement in a Y-type Micromixer. Chem. Eng. Process. 2015, 97, 12. DOI: 10.1016/j.cep.2015.08.010.
  • Jafari, O.; Rahimi, M.; Kakavandi, F. H. Liquid–Liquid Extraction in Twisted Micromixers. Chem. Eng. Process. 2016, 101, 33. DOI: 10.1016/j.cep.2015.12.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.