290
Views
3
CrossRef citations to date
0
Altmetric
Membrane separations

On the relative influence of the hydrodynamics of lab-scale set-ups and the membrane materials on the rejection of homogeneous metal catalysts in solvent resistant nanofiltration

, , &
Pages 766-778 | Received 03 Jul 2019, Accepted 05 Dec 2019, Published online: 18 Dec 2019

References

  • Marchetti, P.; Jimenez Solomon, M.; Szekely, G.; Livingston, A. Molecular Separation with Organic Solvent Nanofiltration: A Critical Review. Chem. Rev. 2014, 114(21), 10735. DOI: 10.1021/cr500006j.
  • Buonomenna, M. G.; Bae, J. Organic Solvent Nanofiltration in Pharmaceutical Industry. Sep. Purif. Rev. 2015, 44(2), 157. DOI: 10.1080/15422119.2014.918884.
  • Vandezande, P.; Gevers, L.; Vankelecom, I. Solvent Resistant Nanofiltration: Separating on a Molecular Level. Chem. Soc. Rev. 2008, 37(2), 365. DOI: 10.1039/B610848M.
  • Vankelecom, I.;. Polymeric Membranes in Catalytic Reactors. Chem. Rev. 2002, 102(10), 3779. DOI: 10.1021/cr0103468.
  • Csera, L.; Fodi, T.; Kupai, J.; Balogh, G.; Garforth, A.; Szekely, G. Membrane-assisted Catalysis in Organic Media. Adv. Mater. Lett. 2017, 8(12), 1094. DOI: 10.5185/amlett.2017.1541.
  • Peeva, L.; Da Silva Burgal, J.; Heckenast, Z.; Brazy, F.; Cazenave, F.; Livingston, A. Continuous Consecutive Reactions with Inter-Reaction Solvent Exchange by Membrane Separation. Angew. Chem. Int. 2016, 55(43), 13576. DOI: 10.1002/anie.201607795.
  • Dreimann, J.; Lutze, P.; Zagajewsky, M.; Behr, A.; Górak, A.; Vorholt, A. Highly Integrated Reactor–Separator Systems for the Recycling of Homogeneous Catalysts. Chem. Eng. Process. 2016, 99, 124. DOI: 10.1016/j.cep.2015.07.019.
  • O’Neal, E.; Jensen, K. Continuous Nanofiltration and Recycle of a Metathesis Catalyst in a Microflow System. ChemCatChem. 2014, 6(10), 3004. DOI: 10.1002/cctc.v6.10.
  • Siew, W.; Ates, C.; Merschaert, A.; Livingston, A. Efficient and Productive Asymmetric Michael Addition: Development of a Highly Enantioselective Quinidine-based Organocatalyst for Homogeneous Recycling via Nanofiltration. Green Chem. 2013, 15(3), 663. DOI: 10.1039/c2gc36407g.
  • Cano-Odena, A.; Vandezande, P.; Fournier, D.; Van Camp, W.; Du Prez, F.; Vankelecom, I. Solvent-resistant Nanofiltration for Product Purification and Catalyst Recovery in Click Chemistry Reactions. Chem. Weinh. Bergstr. Ger. 2010, 16(3), 1061.
  • Aerts, S.; Buekenhoudt, A.; Weyten, H.; Gevers, L.; Vankelecom, I.; Jacobs, P. The Use of Solvent Resistant Nanofiltration in the Recycling of the Co-Jacobsen Catalyst in the Hydrolytic Kinetic Resolution (HKR) of Epoxides. J. Membr. Sci. 2006, 280(1–2), 245. DOI: 10.1016/j.memsci.2006.01.025.
  • Mertens, P.; Bulut, M.; Gevers, L.; Vankelecom, I.; Jacobs, P.; Vos, D. Catalytic Oxidation of 1,2-diols to α-hydroxy-carboxylates with Stabilized Gold Nanocolloids Combined with a Membrane-based Catalyst Separation. Catal. Lett. 2005, 102(1–2), 57. DOI: 10.1007/s10562-005-5203-9.
  • Großeheilmann, J.; Büttner, H.; Kohrt, C.; Kragl, U.; Werner, T. Recycling of Phosphorus-based Organocatalysts by Organic Solvent Nanofiltration. ACS Sustainable Chem. Eng. 2015, 3, 2817. DOI: 10.1021/acssuschemeng.5b00734.
  • Kisszekelyi, P.; Alammar, A.; Kupai, J.; Huszthy, P.; Barabas, J.; Holtzl, T.; Szente, L.; Bawn, C.; Adams, R.; Szekely, G. Asymmetric Synthesis with Cinchona-decorated Cyclodextrin in a Continuous-flow Membrane Reactor. J. Catal. 2019, 371, 255. DOI: 10.1016/j.jcat.2019.01.041.
  • Ormerod, D.; Bongers, B.; Porto-Carrero, W.; Giegas, S.; Vijt, G.; Lefevre, N.; Lauwers, D.; Brusten, W.; Buekenhoudt, A. Separation of Metathesis Catalysts and Reaction Products in Flow Reactors Using Organic Solvent Nanofiltration. RSC Adv. 2013, 3(44), 21501. DOI: 10.1039/c3ra44860f.
  • Razak, N.; Shaharun, M.; Mukhtar, H.; Taha, M. Separation of Hydridocarbonyltris(triphenylphosphine) Rhodium (I)catalyst Using Solvent Resistant Nanofiltration Membrane. Sains Malays. 2013, 42(4), 515.
  • Shaharun, M.; Taha, M. (2012) Nanofiltration of rhodium tris(triphenylphosphine) catalyst in ethyl acetate solution. American Institute of Physics, Conference Proceedings.
  • Rabiller-Baudry, M.; Nasser, G.; Renouard, T.; Delaunay, D.; Camus, M. Comparison of Two Nanofiltration Membrane Reactors for a Model Reaction of Olefin Metathesis Achieved in Toluene. Sep. Purif. Technol. 2013, 116, 46. DOI: 10.1016/j.seppur.2013.04.052.
  • Nasser, G.; Renouard, T.; Shahane, S.; Fischmeister, C.; Bruneau, C.; Rabiller-Baudry, M. Interest of the Precatalyst Design for Olefin Metathesis Operating in a Discontinuous Nanofiltration Membrane Reactor. ChemPlusChem. 2013, 78(7), 728. DOI: 10.1002/cplu.v78.7.
  • Goebel, R.; Schreiber, M.; Koleva, V.; Horn, M.; Gorak, A.; Skiborowski, M. On the Reliability of Lab-scale Experiments for the Determination of Membrane Specific Flux Measurements in Organic Solvent Nanofiltration. Chem. Eng. Res. Des. 2019, 148, 271. DOI: 10.1016/j.cherd.2019.06.013.
  • Imbrogno, A.; Schäfer, A. Comparative Study of Nanofiltration Membrane Characterization Devices of Different Dimension and Configuration (Cross Flow and Dead End). J. Membr. Sci. 2019, 585(67). DOI: 10.1016/j.memsci.2019.04.035.
  • Belfort, G.;. Membrane Modules: Comparison of Different Configurations Using Fluid Mechanics. J. Membr. Sci. 1988, 35(3), 245. DOI: 10.1016/S0376-7388(00)80299-9.
  • Mavrov, V.; Nikolov, N.; Islam, M.; Nikolova, J. An Investigation on the Configuration of Inserts in Tubular Ultrafiltration Module to Control Concentration Polarization. J. Membr. Sci. 1992, 75(1–2), 197. DOI: 10.1016/0376-7388(92)80017-E.
  • Ren, Z.; Yang, Y.; Zhang, W.; Liu, J.; Wang, H. Modeling Study on the Mass Transfer of Hollow Fiber Renewal Liquid Membrane: Effect of the Hollow Fiber Module Scale. J. Membr. Sci. 2013, 439, 28. DOI: 10.1016/j.memsci.2013.03.030.
  • Zydney, A.; Xenopoulos, A. Improving Dextran Tests for Ultrafiltration Membranes: Effect of Device Format. J. Membr. Sci. 2007, 291, 180. DOI: 10.1016/j.memsci.2007.01.006.
  • Tsibranska, I.; Tylkowsky, B. Concentration of Ethanolic Extracts from Sideritis Ssp. L. By Nanofiltration: Comparison of Dead-end and Cross-flow Modes. Food Bioprod. Process. 2013, 91(2), 169. DOI: 10.1016/j.fbp.2012.09.004.
  • Patterson, D.; Yen Lau, L.; Roengpithya, C.; Gibbins, E.; Livingston, A. Membrane Selectivity in the Organic Solvent Nanofiltration of Trialkylamine Bases. Desalination. 2008, 218(1–3), 248. DOI: 10.1016/j.desal.2007.02.020.
  • Shi, B.; Peshev, D.; Marchetti, P.; Zhang, S.; Livingston, A. Multi-scale Modelling of OSN Batch Concentration with Spiral-wound Membrane Modules Using OSN Designer. Chem. Eng. Res. Des. 2016, 109, 385. DOI: 10.1016/j.cherd.2016.02.005.
  • Shi, B.; Marchetti, P.; Peshev, D.; Zhang, S.; Livingston, A. Performance of Spiral-wound Membrane Modules in Organic Solvent Nanofiltration – Fluid Dynamics and Mass Transfer Characteristics. J. Membr. Sci. 2015, 494, 8. DOI: 10.1016/j.memsci.2015.07.044.
  • Böcking, A.; Koleva, V.; Wind, J.; Thiermeyer, Y.; Blumenschein, S.; Goebel, R.; Skiborowski, M.; Wessling, M. Can the Variance in Membrane Performance Influence the Design of Organic Solvent Nanofiltration Processes? J. Membr. Sci. 2019, 575, 217. DOI: 10.1016/j.memsci.2018.12.077.
  • Ben Soltane, H.; Roizard, D.; Favre, E. Study of the Rejection of Various Solutes in OSN by a Composite Polydimethylsiloxane Membrane: Investigation of the Role of Solute Affinity. Sep. Purif. Technol. 2016, 161, 193. DOI: 10.1016/j.seppur.2016.01.035.
  • Zeidler, S.; Kätzel, U.; Kreis, P. Systematic Investigation on the Influence of Solutes on the Separation Behavior of a PDMS Membrane in Organic Solvent Nanofiltration. J. Membr. Sci. 2013, 429, 295. DOI: 10.1016/j.memsci.2012.11.056.
  • Soroko, I.; Lopes, M.; Livingston, A. The Effect of Membrane Formation Parameters on Performance of Polyimide Membranes for Organic Solvent Nanofiltration (OSN): Part A. Effect of Polymer/solvent/non-solvent System Choice. J. Membr. Sci. 2011, 381(1–2), 152. DOI: 10.1016/j.memsci.2011.07.027.
  • Razali, M.; Didaskalou, C.; Kim, J.; Babaei, M.; Drioli, E.; Lee, Y.-M.; Szekely, G. Exploring and Exploiting the Effect of Solvent Treatment in Membrane Separations. ACS Appl. Mater. Interfaces. 2017, 9, 11279. DOI: 10.1021/acsami.7b01879.
  • Bastin, M.; Hendrix, K.; Vankelecom, I. Solvent Resistant Nanofiltration for Acetonitrile Based Feeds: A Membrane Screening. J. Memb. Sci. 2017, 536, 176. DOI: 10.1016/j.memsci.2017.05.003.
  • Teixeira, A.; Santos, J.; Crespo, J. Assessment of Solvent Resistant Nanofiltration Membranes for Valorization of Deodorizer Distillates. J. Memb. Sci. 2014, 470, 138. DOI: 10.1016/j.memsci.2014.07.032.
  • Vandezande, P.; Gevers, L.; Paul, J.; Vankelecom, I.; Jacobs, P. High Throughput Screening for Rapid Development of Membranes and Membrane Processes. J. Membr. Sci. 2005, 250(1–2), 305. DOI: 10.1016/j.memsci.2004.11.002.
  • High Throughput Membrane systems - Leuven, http://www.biw.kuleuven.be/cok/membrane2/(accessed November, 2019).
  • Wang, J.; Dlamini, D.; Mishra, A.; Pendergast, M.; Wong, M.; Mamba, B.; Freger, V.; Verliefde, A.; Hoek, E. A Critical Review of Transport through Osmotic Membranes. J. Membr. Sci. 2014, 454, 516. DOI: 10.1016/j.memsci.2013.12.034.
  • Delaunay, D.; Rabiller-Baudry, M.; Gozálvez-Zafrilla, J.; Balannec, B.; Frappart, M.; Paugam, L. Mapping of Protein Fouling by FTIR-ATR as Experimental Tool to Study Membrane Fouling and Fluid Velocity Profile in Various Geometries and Validation by CFD Simulation. Chem. Eng. Process. 2008, 47(7), 1106. DOI: 10.1016/j.cep.2007.12.008.
  • Kawachale, N.; Kumar, A.; Kirpalani, D. A Flow Distribution Study of Laboratory Scale Membrane Gas Separation Cells. J. Membr. Sci. 2009, 332(1–2), 81. DOI: 10.1016/j.memsci.2009.01.042.
  • Schock, G.; Miquel, A. Mass Transfer and Pressure Loss in Spiral Wound Modules. Desalination. 1987, 64, 339. DOI: 10.1016/0011-9164(87)90107-X.
  • Becht, N.; Malik, D.; Tarleton, E. Evaluation and Comparison of Protein Ultrafiltration Test Results: Dead-end Stirred Cell Compared with a Cross-flow System. Sep. Purif. Technol. 2008, 62(1), 228. DOI: 10.1016/j.seppur.2008.01.030.
  • Randriamampianina, A.; Elena, L.; Fontaine, J.; Schiestel, R. Numerical Prediction of Laminar, Transitional and Turbulent Flows in Shrouded Rotor-stator Systems. Phys. Fluids. 1997, 9(6), 1696. DOI: 10.1063/1.869274.
  • Cortés-Juan, F.; Balannec, B.; Renouard, T. CFD-assisted Design Improvement of a Bench-scale Nanofiltration Cell. Sep. Purif. Technol. 2011, 82, 177. DOI: 10.1016/j.seppur.2011.09.010.
  • Dzhonova-Atanasova, D.; Tsibranska, I.; Vlaev, S. Flow Behaviour in a Membrane Cross-flow Filtration Cell: Experimental Observations and CFD Modelling. J. Chem. Technol. Metal. 2017, 52(1), 58.
  • Santos, J.; Geraldes, V.; Velizarov, S.; Crespo, J. Investigation of Flow Patterns and Mass Transfer in Membrane Module Channels Filled with Flow-aligned Spacers Using Computational Fluid Dynamics (CFD). J. Membr. Sci. 2007, 305(1–2), 103. DOI: 10.1016/j.memsci.2007.07.036.
  • Rabiller-Baudry, M.; Diagne, N.; Lebordais, D. How the Experimental Knowledge of the Irreversible Fouling Distribution Can Contribute to Understand the Fluid Circulation in a Spiral Ultrafiltration Membrane. Sep. Purif. Technol. 2014, 136, 157. DOI: 10.1016/j.seppur.2014.08.040.
  • Scott, K.;. Handbook of Industrial Membranes, 1st ed.; Elsevier: The Netherlands, 1995.
  • Shaabana, A.; Hazefa, A.; Abdel-Fataha, M.; Abdel-Monemb, N.; Mahmoud, M. Process Engineering Optimization of Nanofiltration Unit for the Treatment of Textile Plant Effluent in View of Solution Diffusion Model. Egyt. J. Petrol. 2016, 24(1), 79. DOI: 10.1016/j.ejpe.2015.03.018.
  • Murphy, Z.; Gupta, S. Estimation of Mass Transfer Coefficient Using a Combined Nonlinear Membrane Transport and Film Theory Model. Desalination. 1997, 109(1), 39. DOI: 10.1016/S0011-9164(97)00051-9.
  • Renouard, T.; Lejeune, A.; Rabiller-Baudry, M. Separation of Solutes with an Organic Solvent Nanofiltration Cascade: Designs, Simulations and Systematic Study of All Configurations. Sep. Purif. Technol. 2018, 194, 111. DOI: 10.1016/j.seppur.2017.11.029.
  • Keraani, A.; Renouard, T.; Fischmeister, C.; Bruneau, C.; Rabiller-Baudry, M. Recovery of Enlarged Olefin Metathesis Catalysts by Nanofiltration in an Eco-friendly Solvent. ChemSusChem. 2008, 1(11), 927. DOI: 10.1002/cssc.v1:11.
  • Verliefde, A.; Cornelissen, E.; Heijman, S.; Hoek, E.; Amy, G.; Van der Bruggen, B.; Van Dijk, J. Influence of Solute−Membrane Affinity on Rejection of Uncharged Organic Solutes by Nanofiltration Membranes. Environ. Sci. Technol. 2009, 43(7), 2400. DOI: 10.1021/es803146r.
  • Postel, S.; Schneider, C.; Wessling, M. Solvent Dependent Solute Solubility Governs Retention in Silicone Based Organic Solvent Nanofiltration. J. Membr. Sci. 2016, 497, 47. DOI: 10.1016/j.memsci.2015.09.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.