110
Views
10
CrossRef citations to date
0
Altmetric
Adsorption

Green synthesis of graphene-coated sand (GCS) using low-grade dates for evaluation and modeling of the pH-dependent permeable barrier for remediation of groundwater contaminated with copper

ORCID Icon
Pages 14-25 | Received 15 Aug 2019, Accepted 24 Nov 2019, Published online: 25 Dec 2019

References

  • Abd Ali, Z. T.; Flayeh, H. M.; Ibrahim, M. A. Numerical Modeling of Performance of Olive Seeds as Permeable Reactive Barrier for Containment of Copper from Contaminated Groundwater. Desalin. Water Treat. 2019, 139, 268–276. DOI: 10.5004/dwt.2019.23305.
  • Ravindra, K.; Mor, S. Distribution and Health Risk Assessment of Arsenic and Selected Heavy Metals in Groundwater of Chandigarh, India. Environ. Pollut. 2019, 250, 820–830. DOI: 10.1016/j.envpol.2019.03.080.
  • Chaoua, S.; Boussaa, S.; Gharmali, A. E.; Boumezzough, A. Impact of Irrigation with Wastewater on Accumulation of Heavy Metals in Soil and Crops in the Region of Marrakech in Morocco. J. Saudi Soc. Agric. Sci. 2018. DOI: 10.1016/j.jssas.2018.02.003.
  • Ayad, A. H.; Faisal, Z. T.; Ali, A. Remediation of Groundwater Contaminated with the Lead–Phenol Binary System by Granular Dead Anaerobic Sludge-permeable Reactive Barrier. Environ. Technol. 2017, 38, 2534–2542. DOI: 10.1080/09593330.2016.1270355.
  • Ayad, A. H.; Faisal, Z. T.; Ali, A. Using Sewage Sludge as a Permeable Reactive Barrier for Remediation of Groundwater Contaminated with Lead and Phenol. Sep. Sci. Technol. 2017, 52, 732–742. DOI: 10.1080/01496395.2016.1251463.
  • Kumarasinghe, U.; Kawamoto, K.; Saito, T.; Sakamoto, Y.; Mowjood, M. I. Evaluation of Applicability of Filling Materials in Permeable Reactive Barrier (PRB) System to Remediate Groundwater Contaminated with Cd and Pb at Open Solid Waste Dump Sites. Process Saf. Environ. Prot. 2018, 120, 118–127. DOI: 10.1016/j.psep.2018.09.003.
  • Gupta, S. S.; Sreeprasad, T. S.; Maliyekkal, S. M.; Das, S. K.; Pradeep, T. Graphene from Sugar and Its Application in Water Purification. Appl. Mater. Interfaces. 2012, 4, 4156−4163. DOI: 10.1021/am300889u.
  • Dubey, R.; Bajpai, J.; Bajpai, A. K. Green Synthesis of Graphene Sand Composite (GSC) as Novel Adsorbent for Efficient Removal of Cr (VI) Ions from Aqueous Solution. J. Water Process Eng. 2015, 5, 83–94. DOI: 10.1016/j.jwpe.2015.01.004.
  • Rezaee, R.; Nasseri, S.; Mahvi, A. H.; Nabizadeh, R.; Mousavi, S. A.; Maleki, A.; Alimohammadi, M.; Jafari, A.; Borji, S. H. Development of a Novel Graphene Oxide-blended Polysulfone Mixed Matrix Membrane with Improved Hydrophilicity and Evaluation of Nitrate Removal from Aqueous Solutions. Chem. Eng. Commun. 2015, 1–14. DOI: 10.1080/00986445.2018.1503174.
  • Rezaee, R.; Nasseri, S.; Mahvi, A. H.; Nabizadeh, R.; Mousavi, S. A.; Rashidi, A.; Jafari, A.; Nazmara, S. Fabrication and Characterization of a Polysulfone-graphene Oxide Nanocomposite Membrane for Arsenate Rejection from Water. J. Environ. Health Sci. Eng. 2015, 13(1). DOI: 10.1186/s40201-015-0217-8.
  • Behravan, M.; Panahi, A. H.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile Green Synthesis of Silver Nanoparticles usingBerberis Vulgarisleafand Root Aqueous Extract and Its Antibacterial Activity. Int. J. Biol. Macromol. 2019, 124, 148–154. DOI: 10.1016/j.ijbiomac.2018.11.101.
  • Ruiz- Hitzky, E.; Darder, M.; Fernandes, F. M.; Zatile, E.; Palomares, F. J.; Aranda, P. Supported Graphene from Natural Resources: Easy Preparation and Application. Adv. Mater. 2011, 239, 5250–5255. DOI: 10.1002/adma.201101988.
  • Wen, X.; Jian, L.; Jun, W.; Lin, Y.; Luo, Y. Influence of Coastal Groundwater Salinization on the Distribution and Risks of Heavy Metals. Sci. Total Environ. 2019, 652, 267–277. DOI: 10.1016/j.scitotenv.2018.10.250.
  • Huang, H.; Bing, L.; Jing, L.; Zhang, P.; Wei, Y.; Zhao, N.; Guo, G.; Young, B. Influence of Process Parameters on the Heavy Metal (Zn2+, Cu2+, and Cr3+) Content of Struvite Obtained from Synthetic Swine Wastewater. Environ. Pollut. 2019, 245, 658–665. DOI: 10.1016/j.envpol.2018.11.046.
  • Wankasi, D.; Tarawou, T. Studies on the Effect of pH on the Sorption of Pb(II) and Cu(II) Ions from Aqueous Media by Nipa Palm (Nypa Fruticans Wurmb). J. Appl. Sci. Environ. Manage. 2008, 12(4), 87–94.
  • Pasalari, H.; Ghaffari, H. R.; Mahvi, A. H.; Pourshabanian, M.; Azari, A. Activated Carbon Derived from Date Stone as Natural Adsorbent for Phenol Removal from Aqueous Solution. Desalin. Water Treat. 2017, 72, 406–417. DOI: 10.5004/dwt.2017.20686.
  • Jeppu, G. P.; Clement, T. P. A Modified Langmuir– Freundlich Isotherm Model for Simulating pH-dependent Adsorption Effects. J. Contam. Hydrol. 2012, 129–130, 46–53. DOI: 10.1016/j.jconhyd.2011.12.001.
  • Wanga, C.; Boithias, L.; Ning, Z.; Hana, Y.; Sauvage, S.; Sánchez-Pérez, J.-M.; Kuramochi, K.; Hatano, R. Comparison of Langmuir and Freundlich Adsorption Equations within the SWAT-K Model for Assessing Potassium Environmental Losses at Basin Scale. Agric. Water Manage. 2017, 180, 205–211. DOI: 10.1016/j.agwat.2016.08.001.
  • Lesmana, S. O.; Febriana, N.; Soetaredjo, F. E.; Sunarso, J.; Ismadji, S. Studies on Potential Applications of Biomass for the Separation of Heavy Metals from Water and Wastewater. Biochem. Eng. J. 2009, 44, 19–41. DOI: 10.1016/j.bej.2008.12.009.
  • Faisal, A. A. H.;. Effect of pH on the Performance of Olive Pips Reactive Barrier through the Migration of Copper-contaminated Groundwater. Desalin. Water Treat. 2016, 57, 4935–4943. DOI: 10.1080/19443994.2014.999132.
  • Gupta, S. S.; Sreeprasad, T. S.; Maliyekkal, S. M.; Das, S. K.; Pradeep, T. Graphene from Sugar and Its Application in Water Purification. ACS Appl. Mater. Interfaces. 2012, 4(8), 4156–4163. DOI: 10.1021/am300889u.
  • Mathews, A. P.; Zayas, I. Particle Size and Shape Effects on Adsorption Rate Parameters. J. Environ. Eng. 1989, 115(1), 41–55. DOI: 10.1061/(ASCE)0733-9372(1989)115:1(41).
  • Abd Ali, Z. T.;. Using Activated Carbon Developed from Iraqi Date Palm Seeds as Permeable Reactive Barrier for Remediation of Groundwater Contaminated with Copper. Al-Khwarizmi Eng. J. 2016, 12(2), 34–44.
  • Sulaymon, A. H.; Ayad, A. H.; Faisal, Z. T.; Ali, A. Performance of Granular Dead Anaerobic Sludge as Permeable Reactive Barrier for Containment of Lead from Contaminated Groundwater. Desalin. Water Treat. 2015, 56, 327–337. DOI: 10.1080/19443994.2014.942376.
  • Ayad, A. H.; Faisal, Z. T.; Ali, A. Using Granular Dead Anaerobic Sludge as Permeable Reactive Barrier for Remediation of Groundwater Contaminated with Phenol. J. Environ. Eng. 2015, 141(4), 04014072. DOI: 10.1061/(ASCE)EE.1943-7870.0000903.
  • Delleur, J.;. The Handbook of Groundwater Engineering. CRC Press LLC, Springer-Verlag: Boca Raton, FL, 1999. ISBN: 3-540-64745-7.
  • Ujfaludi, L.;. Longitudinal Dispersion Tests in Non-uniform Porous Media. Hydrol. Sci. J. 1986, 31(4), 467–474. DOI: 10.1080/02626668609491067.
  • Ayad, A. H.; Faisal, Z. T.; Ali, A. Groundwater Protection from Lead Contamination Using Granular Dead Anaerobic Sludge Biosorbent as Permeable Reactive Barrier. Desalin. Water Treat. 2016, 57, 3891–3903. DOI: 10.1080/19443994.2014.990928.
  • Leea, M.-E.; Parkb, J. H.; Chung, J. W. Comparison of the Lead and Copper Adsorption Capacities of Plant Source Materials and Their Biochars. J. Environ. Manage. 2019, 236, 118–124. DOI: 10.1016/j.jenvman.2019.01.100.
  • Ayad, A. H.; Faisal, Z. T.; Ali, A. Phenol Removal Using Granular Dead Anaerobic Sludge Permeable Reactive Barrier in a Simulated Groundwater Pilot Plant. J. Eng. 2014, 20, 11.
  • Kaya, B.; Gharehbaghi, A. Implicit Solutions of Advection Diffusion Equation by Various Numerical Methods. Aust. J. Basic Appl. Sci. 2014, 8(1), 381–391.
  • Tewari, C. J.; Kamal, M. In Situ Laboratory Analysis of Sucrose in Sugarcane Bagasse Using Attenuated Total Reflectance Spectroscopy and Chemo Metrics. Int. J. Food Sci. Technol. 2007, 42(2), 200–207. DOI: 10.1111/j.1365-2621.2006.01209.x.
  • Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Water-soluble Graphene Covalently Functionalized by Biocompatible Poly-l-lysine. Langmuir. 2009, 25(20), 12030–12033. DOI: 10.1021/la903265p.
  • El Haouti, R.; Anfar, Z.; Chennah, A.; Amaterz, E.; Zbair, M.; El Alem, N.; Ezahri, M. Synthesis of Sustainable Mesoporous Treated Fish Waste as Adsorbent for Copper Removal. Groundwater Sustainable Dev. 2018, 8, 1–9. DOI: 10.1016/j.gsd.2018.08.004.
  • Safari, E.; Rahemi, N.; Kahforoushan, D.; Allahyari, S. Copper Adsorptive Removal from Aqueous Solution by Orange Peel Residue Carbon Nanoparticles Synthesized by Combustion Method Using Response Surface Methodology. J. Environ. Chem. Eng. 2019, 7(1), 102847. DOI: 10.1016/j.jece.2018.102847.
  • Fetter, C. W.;. Contaminant Hydrogeology, second ed.; Prentice-Hall, New Jersey, NJ, 1999. ISBN: 0-13-751215-5
  • Anderson, M. P.; Woessner, W. W. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, second ed.; Academic Press: San Diego, CA, 1992.
  • Hashim, M. A.; Mukhopadhyay, S.; Sahu, J. N.; Sengupta, B. Remediation Technologies for Heavy Metal Contaminated Groundwater. J. Environ. Manage. 2011, 92(10), 2355–2388. DOI: 10.1016/j`envman.2011.06.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.