648
Views
11
CrossRef citations to date
0
Altmetric
Precipitation

Effective removal of phosphorous from dairy wastewater by struvite precipitation: process optimization using response surface methodology and chemical equilibrium modeling

&
Pages 395-410 | Received 20 Jun 2019, Accepted 05 Dec 2019, Published online: 01 Jan 2020

References

  • WorldAtlas. (2018) Top Cows’ Milk Producing Countries in the World. www.worldatlas.com/articles/top-cows-milk-producing-countries-in-the-world.html. (Accessed March, 4 2019).
  • Carvalho, F.; Prazeres, A. R.; Rivas, J. Cheese Whey Wastewater: Characterization and Treatment. Sci. Total Environ. 2013, 445–446, 385–396. DOI: 10.1016/j.scitotenv.2012.12.038.
  • Karadag, D.; Köroʇlu, O. E.; Ozkaya, B.; Cakmakci, M. A Review on Anaerobic Biofilm Reactors for the Treatment of Dairy Industry Wastewater. Process Biochem. 2015, 50, 262–271. DOI: 10.1016/j.procbio.2014.11.005.
  • Ramasamy, E. V.; Gajalakshmi, S.; Sanjeevi, R.; Jithesh, M. N.; Abbasi, S. A. Feasibility Studies on the Treatment of Dairy Wastewaters with Upflow Anaerobic Sludge Blanket Reactors. Bioresour. Technol. 2004, 93, 209–212. DOI: 10.1016/j.biortech.2003.11.001.
  • Rahman, M. M.; Salleh, M. A. M.; Rashid, U.; Ahsan, A.; Hossain, M. M.; Ra, C. S. Production of Slow Release Crystal Fertilizer from Wastewaters through Struvite Crystallization - A Review. Arab. J. Chem. 2014, 7, 139–155. DOI: 10.1016/j.arabjc.2013.10.007.
  • Rabinovich, A.; Rouff, A. A.; Lew, B.; Ramlogan, M. V. Aerated Fluidized Bed Treatment for Phosphate Recovery from Dairy and Swine Wastewater. ACS Sustain. Chem. Eng. 2018, 6, 652–659. DOI: 10.1021/acssuschemeng.7b02990.
  • Huang, H.; Liu, J.; Ding, L. Recovery of Phosphate and Ammonia Nitrogen from the Anaerobic Digestion Supernatant of Activated Sludge by Chemical Precipitation. J. Clean. Prod. 2015, 102, 437–446. DOI: 10.1016/j.jclepro.2015.04.117.
  • Chen, M.; Graedel, T. E. The Potential for Mining Trace Elements from Phosphate Rock. J. Clean. Prod. 2015, 91, 337–346. DOI: 10.1016/j.jclepro.2014.12.042.
  • Shu, L.; Schneider, P.; Jegatheesan, V.; Johnson, J. An Economic Evaluation of Phosphorus Recovery as Struvite from Digester Supernatant. Bioresour. Technol. 2006, 97, 2211–2216. DOI: 10.1016/j.biortech.2005.11.005.
  • Huang, H.; Guo, G.; Zhang, P.; Zhang, D.; Liu, J.; Tang, S. Feasibility of Physicochemical Recovery of Nutrients from Swine Wastewater: Evaluation of Three Kinds of Magnesium Sources. J. Taiwan Inst. Chem. Eng. 2017, 70, 209–218. DOI: 10.1016/j.jtice.2016.10.051.
  • Cordell, D.; Drangert, J. O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Chang. 2009, 19, 292–305. DOI: 10.1016/j.gloenvcha.2008.10.009.
  • Dao, T. H.;. Polyvalent Cation Effects on Myo-inositol Hexakis Dihydrogenphosphate Enzymatic Dephosphorylation in Dairy Wastewater. J. Environ. Qual. 2003, 32, 694–701. DOI: 10.2134/jeq2003.6940.
  • Yu, R.; Ren, H.; Wu, J.; Zhang, X. A Novel Treatment Processes of Struvite with Pretreated Magnesite as A Source of Low-cost Magnesium. Environ. Sci. Pollut. Res. 2017, 24, 22204–22213. DOI: 10.1007/s11356-017-9708-8.
  • Uludag-Demirer, S.; Demirer, G. N.; Chen, S. Ammonia Removal from Anaerobically Digested Dairy Manure by Struvite Precipitation. Process Biochem. 2005, 40, 3667–3674. DOI: 10.1016/j.procbio.2005.02.028.
  • Huang, H.; Zhang, P.; Zhang, Z.; Liu, J.; Xiao, J.; Gao, F. Simultaneous Removal of Ammonia Nitrogen and Recovery of Phosphate from Swine Wastewater by Struvite Electrochemical Precipitation and Recycling Technology. J. Clean. Prod. 2016, 127, 302–310. DOI: 10.1016/j.jclepro.2016.04.002.
  • Perwitasari, D. S.; Edahwati, L.; Sutiyono, S.; Muryanto, S.; Jamari, J.; Bayuseno, A. P. Phosphate Recovery through Struvite-family Crystals Precipitated in the Presence of Citric Acid: Mineralogical Phase and Morphology Evaluation. Environ. Technol. 2017, 38, 2844–2855. DOI: 10.1080/09593330.2017.1278795.
  • Huang, H.; Song, Q.; Wang, W.; Wu, S.; Dai, J. Treatment of Anaerobic Digester Effluents of Nylon Wastewater through Chemical Precipitation and a Sequencing Batch Reactor Process. J. Environ. Manag. 2012, 101, 68–74. DOI: 10.1016/j.jenvman.2011.12.035.
  • Lee, S. I.; Weon, S. Y.; Lee, C. W.; Koopman, B. Removal of Nitrogen and Phosphate from Wastewater by Addition of Bittern. Chemosphere. 2003, 51, 265–271. DOI: 10.1016/S0045-6535(02)00807-X.
  • Li, X. Z.; Zhao, Q. L.; Hao, X. D. Ammonium Removal from Landfilll Leachate by Chem-ical Precipitation. Waste Manag. 1999, 19, 409–415. DOI: 10.1016/S0956053X(99)00148-8.
  • Gunay, A.; Karadag, D.; Tosun, I.; Ozturk, M. Use of Magnesite as a Mag-nesium Source for Ammonium Removal from Leachate. J. Hazard. Mater. 2008, 156, 619–623. DOI: 10.1016/j.jhazmat.2007.12.067.
  • Kiani, D.; Sheng, Y.; Lu, B.; Barauskas, D.; Honer, K.; Jiang, Z.; Baltrusaitis, J. Transient Struvite Formation during Stoichiometric (1:1) NH4+ and PO43- Adsorption/Reaction on Magnesium Oxide (Mgo) Particles. ACS Sustain. Chem. Eng. 2019, 7, 1545–1556. DOI: 10.1021/acssuschemeng.8b05318.
  • Dos Santos Pereira, M.; Borges, A. C.; Heleno, F. F.; Squillace, L. F. A.; Faroni, L. R. D. A. Treatment of Synthetic Milk Industry Wastewater Using Batch Dissolved Air Flotation. J. Clean. Prod. 2018, 189, 729–737. DOI: 10.1016/j.jclepro.2018.04.065.
  • Bashir, M. J. K.; Aziz, H. A.; Yusoff, M. S.; Adlan, M. N. Application of Response Surface Methodology (RSM) for Optimization of Ammoniacal Nitrogen Removal from Semi-aerobic Landfill Leachate Using Ion Exchange Resin. Desalination. 2010, 254, 154–161. DOI: 10.1016/j.desal.2009.12.002.
  • Wu, Y.; Zhou, S. Improving the Prediction of Ammonium Nitrogen Removal through Struvite Precipitation. Environ. Sci. Pollut. Res. 2012, 19, 347–360. DOI: 10.1007/s11356-011-0520-6.
  • Musvoto, E.;. Integrated Chemical-physical Processes modelling-II. Simulating Aeration Treatment of Anaerobic Digester Supernatants. Water Res. 2000, 34, 1868–1880. DOI: 10.1016/S0043-1354(99)00335-8.
  • Wang, J.; Song, Y.; Yuan, P.; Peng, J.; Fan, M. Modeling the Crystallization of Magnesium Ammonium Phosphate for Phosphorus Recovery. Chemosphere. 2006, 65, 1182–1187. DOI: 10.1016/j.chemosphere.2006.03.062.
  • Liu, B.; Giannis, A.; Zhang, J.; Chang, V. W. C.; Wang, J. Y. Characterization of Induced Struvite Formation from Source-separated Urine Using Seawater and Brine as Magnesium Sources. Chemosphere. 2013, 93, 2738–2747. DOI: 10.1016/j.chemosphere.2013.09.025.
  • Çelen, I.; Buchanan, J. R.; Burns, R. T.; Bruce Robinson, R.; Raj Raman, D. Using a Chemical Equilibrium Model to Predict Amendments Required to Precipitate Phosphorus as Struvite in Liquid Swine Manure. Water Res. 2007, 41, 1689–1696. DOI: 10.1016/j.watres.2007.01.018.
  • Song, Y.; Hahn, H. H.; Hoffmann, E. Effects of Solution Conditions on the Precipitation of Phosphate for Recovery: A Thermodynamic Evaluation. Chemosphere. 2002, 48, 1029–1034. DOI: 10.1016/S0045-6535(02)00183-2.
  • Broido, A.;. A Simple, Sensitive Graphical Method of Treating Thermogravimentric Analysis Data. J. Polym. Sci. Part A-2: Polym. Phys. 1969, 7, 1761–1773. DOI: 10.1002/pol.1969.160071012.
  • APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, 2012.
  • Li, W.; Ding, X.; Liu, M.; Guo, Y.; Liu, L. Optimization of Process Parameters for Mature Landfill Leachate Pretreatment Using MAP Precipitation. Front. Environ. Sci. Eng. China. 2012, 6, 892–900. DOI: 10.1007/s11783-012-0440-9.
  • Ohlinger, K. N.; Young, T. M.; Schroeder, E. D. Predicting Struvite Formation in Digestion. Water Res. 1998, 32, 3607–3614. DOI: 10.1016/S0043-1354(98)00123-7.
  • Ronteltap, M.; Maurer, M.; Gujer, W. Struvite Precipitation Thermodynamics in Source-separated Urine. Water Res. 2007, 41, 977–984. DOI: 10.1016/j.watres.2006.11.046.
  • Taylor, A. W.; Frazier, A. W.; Gurney, E. L. Solubility Products of Di- Tri Magnesium Phosphates and the Dissociation of Magnesium Phosphate Solutions. Trans. Faraday Soc. 1963, 59, 1585–1589. DOI: 10.1039/tf9635901580.
  • Chen, Y.; Liu, C.; Guo, L.; Nie, J.; Li, C. Removal and Recovery of Phosphate Anion as Struvite from Wastewater. Clean Technol. Environ. Policy. 2018, 20, 2375–2380. DOI: 10.1007/s10098-018-1607-2.
  • Chimenos, J. M.; Fernández, A. I.; Villalba, G.; Segarra, M.; Urruticoechea, A.; Artaza, B.; Espiell, F. Removal of Ammonium and Phosphates from Wastewater Resulting from the Process of Cochineal Extraction Using MgO-containing By-product. Water Res. 2003, 37, 1601–1607. DOI: 10.1016/S0043-1354(02)00526-2.
  • Kurtulus, G.; Tas, A. C. Transformations of Neat and Heated Struvite (Mgnh4po4·6h2o). Mater. Lett. 2011, 65, 2883–2886. DOI: 10.1016/j.matlet.2011.06.086.
  • Chauhan, C. K.; Joshi, M. J. In Vitro Crystallization, Characterization and Growth-inhibition Study of Urinary Type Struvite Crystals. J. Cryst. Growth. 2013, 362, 330–337. DOI: 10.1016/j.jcrysgro.2011.11.008.
  • Heraldy, E.; Rahmawati, F.; Putra, D. P. Preparation of Struvite from Desalination Waste. J. Environ. Chem. Eng. 2017, 5, 1666–1675. DOI: 10.1016/j.jece.2017.03.005.
  • Song, W.; Li, Z.; Liu, F.; Ding, Y.; Qi, P.; You, H.; Jin, C. Effective Removal of Ammonia Nitrogen from Waste Seawater Using Crystal Seed Enhanced Struvite Precipitation Technology with Response Surface Methodology for Process Optimization. Environ. Sci. Pollut. Res. 2018, 25, 628–638. DOI: 10.1007/s11356-017-0441-0.
  • Paulik, F.; Paulik, J. TG and EGA Investigations of the Decomposition of Magnesium Ammonium Phosphate Hexahydrate by Means of the Derivatograph under Conventional and Quasi-isothermal-quasi-isobaric Conditions. J. Therm. Anal. 1975, 8, 557–566. DOI: 10.1007/BF01910134.
  • Bhuiyan, M. I. H.; Mavinic, D. S.; Koch, F. A. Thermal Decomposition of Struvite and Its Phase Transition. Chemosphere. 2008, 70, 1347–1356. DOI: 10.1016/j.chemosphere.2007.09.056.
  • Frost, R. L.; Weier, M. L.; Erickson, K. L. Thermal Decomposition of Struvite. J. Therm. Anal. Calorim. 2004, 76, 1025–1033. DOI: 10.1023/b:jtan.0000032287.08535.b3.
  • Tansel, B.; Lunn, G.; Monje, O. Struvite Formation and Decomposition Characteristics for Ammonia and Phosphorus Recovery: A Review of Magnesium-ammonia-phosphate Interactions. Chemosphere. 2018, 194, 504–514. DOI: 10.1016/j.chemosphere.2017.12.004.
  • Mijangos, F.; Kamel, M.; Lesmes, G.; Muraviev, D. N. Synthesis of Struvite by Ion Exchange Isothermal Supersaturation Technique. React. Funct. Polym. 2004, 60, 151–161. DOI: 10.1016/j.reactfunctpolym.2004.02.019.
  • Hug, A.; Udert, K. M. Struvite Precipitation from Urine with Electrochemical Magnesium Dosage. Water Res. 2013, 47, 289–299. DOI: 10.1016/j.watres.2012.09.036.
  • Garcia-Belinchón, C.; Rieck, T.; Bouchy, L.; Galí, A.; Rougé, P.; Fàbregas, C. Struvite Recovery: Pilot-scale Results and Economic Assessment of Different Scenarios. Water Pract. Technol. 2013, 8, 119–130. DOI: 10.2166/wpt.2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.