385
Views
10
CrossRef citations to date
0
Altmetric
Extraction

Stripping of Fe(III) from Aliquat 336 by NaH2PO4: implication for rare-earth elements recovery from red mud

, , , , & ORCID Icon
Pages 301-309 | Received 09 May 2019, Accepted 05 Jan 2020, Published online: 10 Jan 2020

References

  • Xue, S.; Wu, Y.; Li, Y.; Kong, X.; Zhu, F.; William, H.; Li, X.; Ye, Y. Industrial Wastes Applications for Alkalinity Regulation in Bauxite Residue: A Comprehensive Review. J. Central South Univ. 2019, 26(2), 268–288. DOI: 10.1007/s11771-019-4000-3.
  • Xue, S.; Kong, X.; Zhu, F.; Hartley, W.; Li, X. Proposal for Management and Alkalinity Transformation of Bauxite Residue in China. Environ. Sci. Pollut. Res. 2016, 23(13), 12822–12834. DOI: 10.1007/s11356-016-6478-7.
  • Zhu, F.; Hou, J.; Xue, S.; Wu, C.; Wang, Q.; Hartley, W. Vermicompost and Gypsum Amendments Improve Aggregate Formation in Bauxite Residue. Land Degrad. Dev. 2017, 28(7), 2109–2120. DOI: 10.1002/ldr.2737.
  • Zhu, F.; Liao, J.; Xue, S.; Hartley, W.; Zou, Q.; Wu, H. Evaluation of Aggregate Microstructures following Natural Regeneration in Bauxite Residue as Characterized by Synchrotron-based X-ray Micro-computed Tomography. Sci. Total Environ. 2016, 573, 155–163. DOI: 10.1016/j.scitotenv.2016.08.108.
  • Li, X.; Xiao, W.; Liu, W.; Liu, G.; Peng, Z.; ZHOU, Q.; QI, T. Recovery of Alumina and Ferric Oxide from Bayer Red Mud Rich in Iron by Reduction Sintering. Trans. Nonferrous Met. Soc. China. 2009, 19(5), 1342–1347. DOI: 10.1016/S1003-6326(08)60447-1.
  • Yang, Y.; Wang, X.; Wang, M.; Wang, H.; Xian, P. Recovery of Iron from Red Mud by Selective Leach with Oxalic Acid. Hydrometallurgy. 2015, 157, 239–245. DOI: 10.1016/j.hydromet.2015.08.021.
  • Yang, Y.; Wang, X.; Wang, M.; Wang, H.; Xian, P. Iron Recovery from the Leached Solution of Red Mud through the Application of Oxalic Acid. Int. J. Miner. Process. 2016, 157, 145–151. DOI: 10.1016/j.minpro.2016.11.001.
  • Burke, I. T.; Peacock, C. L.; Lockwood, C. L.; Stewart, D. I.; Mortimer, R. J. G.; Ward, M. B.; Renforth, P.; Gruiz, K.; Mayes, W. M. Behavior of Aluminum, Arsenic, and Vanadium during the Neutralization of Red Mud Leachate by HCl, Gypsum, or Seawater. Environ. Sci. Technol. 2013, 47(12), 6527. DOI: 10.1021/es4010834.
  • Vachon, P.; Tyagi, R. D.; Auclair, J. C.; Wilkinson, K. J. Chemical and Biological Leaching of Aluminum from Red Mud. Environ. Sci. Technol. 1994, 28(1), 26–30. DOI: 10.1021/es00050a005.
  • Zhu, X.; Li, W.; Guan, X. Kinetics of Titanium Leaching with Citric Acid in Sulfuric Acid from Red Mud. Trans. Nonferrous Met. Soc. China. 2015, 25(9), 3139–3145. DOI: 10.1016/S1003-6326(15)63944-9.
  • Agatzini-Leonardou, S.; Oustadakis, P.; Tsakiridis, P. E.; Markopoulos, C. Titanium Leaching from Red Mud by Diluted Sulfuric Acid at Atmospheric Pressure. J. Hazard. Mater. 2008, 157, 579–586. DOI: 10.1016/j.jhazmat.2008.01.054.
  • Deng, B.; Li, G.; Luo, J.; Ye, Q.; Liu, M.; Peng, Z.; Jiang, T. Enrichment of Sc2O3 and TiO2 from Bauxite Ore Residues. J. Hazard. Mater. 2017, 331, 71–80. DOI: 10.1016/j.jhazmat.2017.02.022.
  • Liu, Z.; Li, H.; Jing, Q.; Zhang, M. Recovery of Scandium from Leachate of Sulfation-Roasted Bayer Red Mud by Liquid–Liquid Extraction. JOM. 2017, 69(11), 2373–2378. DOI: 10.1007/s11837-017-2518-0.
  • Rivera, R. M.; Ulenaers, B.; Ounoughene, G.; Binnemans, K.; Van Gerven, T. Extraction of Rare Earths from Bauxite Residue (Red Mud) by Dry Digestion Followed by Water Leaching. Miner. Eng. 2018, 119, 82–92. DOI: 10.1016/j.mineng.2018.01.023.
  • Binnemans, K.; Jones, P. T.; Blanpain, B.; Van Gerven, T.; Pontikes, Y. Towards Zero-waste Valorisation of Rare-earth-containing Industrial Process Residues: A Critical Review. J. Cleaner Prod. 2015, 99, 17–38. DOI: 10.1016/j.jclepro.2015.02.089.
  • Sinha, S.; Abhilash,; Meshram, P.; Pandey, B. D. Metallurgical Processes for the Recovery and Recycling of Lanthanum from Various resources-A Review. Hydrometallurgy. 2016, 160, 47–59. DOI: 10.1016/j.hydromet.2015.12.004.
  • Borra, C. R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Gerven, T. V. Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue. JOM. 2016, 68(11), 2958–2962. DOI: 10.1007/s11837-016-2111-y.
  • Sun, X.; Sun, Y.; Yu, J. Removal of Ferric Ions from Aluminum Solutions by Solvent Extraction, Part I: Iron Removal. Sep. Purif. Technol. 2016, 159, 18–22. DOI: 10.1016/j.seppur.2015.12.054.
  • Zhang, X.; Zhou, K.; Lei, Q.; Huang, Y.; Peng, C.; Chen, W. Selective Removal of Iron from Acid Leachate of Red Mud by Aliquat 336. JOM. 2019, 71, 4608–4615. DOI: 10.1007/s11837-019-03801-4.
  • Zhang, X.; Zhou, K.; Chen, W.; Lei, Q.; Huang, Y.; Peng, C. Recovery of Iron and Rare Earth Elements from Red Mud through an Acid Leaching-stepwise Extraction Approach. J. Central South Univ. 2019, 26(2), 458–466. DOI: 10.1007/s11771-019-4018-6.
  • Sahu, K. K.; Das, R. P. Synergistic Extraction of Iron(III) at Higher Concentrations in D2EHPA-TBP Mixed Solvent Systems. Metall. Mater. Trans. B-Process Metall. Mater. Proc. Sci. 1997, 28(2), 181–189. DOI: 10.1007/s11663-997-0083-6.
  • Hu, G.; Chen, D.; Wang, L.; Liu, J.; Zhao, H.; Liu, Y.; Qi, T.; Zhang, C.; Yu, P. Extraction of Vanadium from Chloride Solution with High Concentration of Iron by Solvent Extraction Using D2EHPA. Sep. Purif. Technol. 2014, 125, 59–65. DOI: 10.1016/j.seppur.2014.01.031.
  • Singh, D. K.; Yadav, K. K.; Singh, H. Extraction and Stripping Behavior of Iron (III) from Phosphoric Acid Medium by D2EHPA Alone and Its Mixtures with TBP/TOPO. Sep. Sci. Technol. 2013, 48(10), 1556–1564. DOI: 10.1080/01496395.2012.753084.
  • Raiguel, S.; Depuydt, D.; Vander Hoogerstraete, T.; Thomas, J.; Dehaen, W.; Binnemans, K. Selective Alkaline Stripping of Metal Ions after Solvent Extraction by Base-stable 1,2,3-triazolium Ionic Liquids. Dalton Trans. 2017, 46(16), 5269–5278. DOI: 10.1039/C7DT00624A.
  • Cui, L.; Cheng, F.; Zhou, J. Preparation of High Purity AlCl3·6H2O Crystals from Coal Mining Waste Based on iron(III) Removal Using Undiluted Ionic Liquids. Sep. Purif. Technol. 2016, 167, 45–54. DOI: 10.1016/j.seppur.2016.04.046.
  • Cui, L.; Zhao, Z.; Guo, Y.; Cheng, F. Stripping of iron(III) from iron(III)-loaded Aliquat 336 Generated during Aluminum Recovery from Coal Waste Leach Liquor Using Sodium Sulfite. Sep. Purif. Technol. 2018, 199, 304–310. DOI: 10.1016/j.seppur.2018.01.048.
  • Zhang, D.; Zhang, X.; Yang, T.; Rao, S.; Hu, W.; Liu, W.; Chen, L. Selective Leaching of Zinc from Blast Furnace Dust with Mono-ligand and Mixed-ligand Complex Leaching Systems. Hydrometallurgy. 2017, 169, 219–228. DOI: 10.1016/j.hydromet.2017.02.003.
  • Silva, L. F. O.; Sampaio, C. H.; Guedes, A.; Fdez-Ortiz De Vallejuelo, S.; Madariaga, J. M. Multianalytical Approaches to the Characterisation of Minerals Associated with Coals and the Diagnosis of Their Potential Risk by Using Combined Instrumental Microspectroscopic Techniques and Thermodynamic Speciation. Fuel. 2012, 94, 52–63. DOI: 10.1016/j.fuel.2011.11.007.
  • Shkirskiy, V.; Keil, P.; Hintze-Bruening, H.; Leroux, F.; Volovitch, P.; Ogle, K. Observation of L-cysteine Enhanced Zinc Dissolution during Cathodic Polarization and Its Consequences for Corrosion Rate Measurements. Electrochim. Acta. 2015, 184, 203–213. DOI: 10.1016/j.electacta.2015.09.009.
  • Zhou, K.; Wu, Y.; Zhang, X.; Peng, C.; Cheng, Y.; Chen, W. Removal of Zn(II) from Manganese-zinc Chloride Waste Liquor Using Ion-exchange with D201 Resin. Hydrometallurgy. 2019, 190, 105171. DOI: 10.1016/j.hydromet.2019.105171.
  • Teng, C.; Zhou, K.; Zhang, Z.; Peng, C.; Chen, W. Elucidating the Structural Variation of Membrane Concentrated Landfill Leachate during Fenton Oxidation Process Using Spectroscopic Analyses. Environ. Pollut. 10.1016/j.envpol.2019.113467 (2019).
  • Zhang, G.; Chen, D.; Wei, G.; Zhao, H.; Wang, L.; Qi, T.; Meng, F.; Meng, L. Extraction of Iron (III) from Chloride Leaching Liquor with High Acidity Using Tri-n-butyl Phosphate and Synergistic Extraction Combined with Methyl Isobutyl Ketone. Sep. Purif. Technol. 2015, 150, 132–138. DOI: 10.1016/j.seppur.2015.07.001.
  • Cui, H.; Chen, J.; Yang, H.; Wang, W.; Liu, Y.; Zou, D.; Liu, W.; Men, G. Preparation and Application of Aliquat 336 Functionalized Chitosan Adsorbent for the Removal of Pb(II). Chem. Eng. J. 2013, 232, 372–379. DOI: 10.1016/j.cej.2013.07.120.
  • Chen, Y.; Chen, W.; Chen, Q.; Peng, C.; He, D.; Zhou, K. Removal of Ammonia-nitrogen in Wastewater Using a Novel Poly Ligand exchanger-Zn(II)-loaded Chelating Resin. Water Sci. Technol. 2019, 79(1), 126–136. DOI: 10.2166/wst.2019.020.
  • Hu, S.; Yin, G.; Wang, Y.; Wu, A. Synthesis, X-ray Structure, and Binding Properties of a New Fluorescent Molecular Clip Derived from Diethoxycarbonyl Glycoluril. Can. J. Chem. 2008, 86(7), 691–694. DOI: 10.1139/v08-058.
  • James, B. D.; Bakalova, M.; Liesegang, J.; Reiff, W. M.; Skelton, B. W.; White, A. H. Isolation and Detailed Characterization of the trans-[(H2O)2FeCl4]‒ Anion: Stabilization of Novel iron(III) Species by Large Organic Cations. Inorg. Chem. 2001, 40(18), 4617–4622. DOI: 10.1021/ic001264p.
  • Cui, L.; Cheng, F.; Zhou, J. Behaviors and Mechanism of Iron Extraction from Chloride Solutions Using Undiluted Cyphos IL 101. Ind. Eng. Chem. Res. 2015, 54(30), 7534–7542. DOI: 10.1021/acs.iecr.5b01546.
  • Yin, Y.; Hu, Y.; Wu, P.; Zhang, H.; Cai, C. A Graphene–Amorphous FePO4 Hollow Nanosphere Hybrid as A Cathode Material for Lithium Ion Batteries. Chem. Commun. 2012, 48(15), 2137. DOI: 10.1039/c2cc17381f.
  • Yin, Y.; Wu, P.; Zhang, H.; Cai, C. Enhanced Cathode Performances of Amorphous FePO4 Hollow Nanospheres with Tunable Shell Thickness in Lithium Ion Batteries. Electrochem. Commun. 2012, 18, 1–3. DOI: 10.1016/j.elecom.2012.01.014.
  • Palacios, E.; Leret, P.; Fernández, J. F.; De Aza, A. H.; Rodríguez, M. A. Synthesis of Amorphous Acid Iron Phosphate Nanoparticles. J. Nanopart. Res. 2012, 14(10), 1–7. DOI: 10.1007/s11051-012-1131-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.