467
Views
24
CrossRef citations to date
0
Altmetric
Water Treatment

Magnetic Fe3O4-graphene oxide nanocomposite – synthesis and practical application for the heterogeneous photo-Fenton degradation of different dyes in water

, ORCID Icon, , , , , & ORCID Icon show all
Pages 425-438 | Received 18 Sep 2019, Accepted 08 Jan 2020, Published online: 21 Jan 2020

References

  • Dilarri, G.; de Almeida, É. J. R.; Pecora, H. B.; Corso, C. R. Removal of Dye Toxicity from an Aqueous Solution Using an Industrial Strain of Saccharomyces Cerevisiae (Meyen). Water, Air, Soil Poll. 2016, 227(8), 269. DOI: 10.1007/s11270-016-2973-1.
  • Youssef, N. A.; Shaban, S. A.; Ibrahim, F. A.; Mahmoud, A. S. Degradation of Methyl Orange Using Fenton Catalytic Reaction. Egypt. J. Pet. 2016, 25(3), 317–321. DOI: 10.1016/j.ejpe.2015.07.017.
  • Carmen, Z.; Daniela, S. Textile Organic Dyes–characteristics, Polluting Effects and Separation/elimination Procedures from Industrial Effluents–a Critical Overview. In Organic Pollutants Ten Years after the Stockholm Convention-environmental and Analytical Update; IntechOpen, 2012.
  • Araujo, C. M. B.; de Assis Filho, R. B.; Baptisttella, A. M. S.; Do Nascimento, G. F. O.; da Costa, G. R. B.; Carvalho, M. N.; Ghislandi, M. G.; da Motta Sobrinho, M. A. Systematic Study of Graphene Oxide Production Using Factorial Design Techniques and Its Application to the Adsorptive Removal of Methylene Blue Dye in Aqueous Medium. Mat. Res. Express. 2018, 5(6), 065042. DOI: 10.1088/2053-1591/aacb51.
  • Shahwan, T.; Sirriah, S. A.; Nairat, M.; Boyacı, E.; Eroğlu, A. E.; Scott, T. B.; Hallam, K. R. Green Synthesis of Iron Nanoparticles and Their Application as a Fenton-like Catalyst for the Degradation of Aqueous Cationic and Anionic Dyes. Chem. Eng. J. 2011, 172(1), 258–266. DOI: 10.1016/j.cej.2011.05.103.
  • Yang, B.; Tian, Z.; Zhang, L.; Guo, Y.; Yan, S. Enhanced Heterogeneous Fenton Degradation of Methylene Blue by Nanoscale Zero Valent Iron (Nzvi) Assembled on Magnetic Fe3O4/reduced Graphene Oxide. J. Water Proc. Eng. 2015, 5, 101–111. DOI: 10.1016/j.jwpe.2015.01.006.
  • Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Env. Chem. Eng. 2014, 2(1), 557–572. DOI: 10.1016/j.jece.2013.10.011.
  • Xu, H. Y.; Wang, Y.; Shi, T. N.; He, X. L.; Qi, S. Y. Process Optimization on MO Discoloration in Fe3O4/RGO-H2O2 Fenton-like System. Water Science and Technology. 2018, 77.12, 2929–2939.
  • Gogate, P. R.; Pandit, A. B. A Review of Imperative Technologies for Wastewater Treatment II: Hybrid Methods. Adv. Environ. Res. 2004, 8(3–4), 553–597. DOI: 10.1016/S1093-0191(03)00031-5.
  • Soon, A. N.; Hameed, B. H. Heterogeneous Catalytic Treatment of Synthetic Dyes in Aqueous Media Using Fenton and Photo-assisted Fenton Process. Desalination. 2011, 269, 1–16. DOI: 10.1016/j.desal.2010.11.002.
  • Baptisttella, A. M. S.; Madeira, V. S.; de Araujo, C. M. B.; Rodrigues, G.; da Silva Neto, J. S.; de Abreu, R. E. L. The Effect of Operating Conditions on Iron Oxides Production-kinetics Mechanism and Final Products Characteristics. Mat. Res. Express. 2019, 6(4), 045029. DOI: 10.1088/2053-1591/aafb24.
  • Zhao, D.; Gao, X.; Wu, C.; Xie, R.; Feng, S.; Chen, C. Facile Preparation of Amino Functionalized Graphene Oxide Decorated with Fe3O4 Nanoparticles for the Adsorption of Cr (VI). Appl. Surf. Sci. 2016, 384, 1–9. DOI: 10.1016/j.apsusc.2016.05.022.
  • Qiu, B.; Xing, M.; Zhang, J. Stöber-like Method to Synthesize Ultralight, Porous, Stretchable Fe2O3/graphene Aerogels for Excellent Performance in photo-Fenton Reaction and Electrochemical Capacitors. J. Mat. Chem. A. 2015, 3(24), 12820–12827. DOI: 10.1039/C5TA02675J.
  • Arshad, A.; Iqbal, J.; Ahmad, I.; Israr, M. Graphene/Fe3O4 Nanocomposite: Interplay between photo-Fenton Type Reaction, and Carbon Purity for the Removal of Methyl Orange. Ceram. Int. 2018, 44(3), 2643–2648. DOI: 10.1016/j.ceramint.2017.08.157.
  • Yu, L.; Chen, J.; Liang, Z.; Xu, W.; Chen, L.; Ye, D. Degradation of Phenol Using Fe3O4-GO Nanocomposite as a Heterogeneous photo-Fenton Catalyst. Sep. Purif. Tech. 2016, 171, 80–87. DOI: 10.1016/j.seppur.2016.07.020.
  • Zubir, N. A.; Yacou, C.; Motuzas, J.; Zhang, X.; Da Costa, J. C. D. Structural and Functional Investigation of Graphene oxide–Fe3O4 Nanocomposites for the Heterogeneous Fenton-like Reaction. Sci. Rep. 2014, 4, 4594. DOI: 10.1038/srep04594.
  • Igwegbe, C. A.; Mohmmadi, L.; Ahmadi, S.; Rahdar, A.; Khadkhodaiy, D.; Dehghani, R.; Rahdar, S. Modeling of Adsorption of Methylene Blue Dye on Ho-CaWO4 Nanoparticles Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Techniques. MethodsX. 2019, 6, 1779–1797. DOI: 10.1016/j.mex.2019.07.016.
  • Ramesh, M.; Rao, M. P.; Rossignol, F.; Nagaraja, H. S. rGO/MnO2 Nanowires for Ultrasonic-combined Fenton Assisted Efficient Degradation of Reactive Black 5. Water Sci. Tech. 2017, 76(7), 1652–1665. DOI: 10.2166/wst.2017.291.
  • Jiang, J.; Zou, J.; Zhu, L.; Huang, L.; Jiang, H.; Zhang, Y. Degradation of Methylene Blue with H2O2 Activated by Peroxidase-like Fe3O4 Magnetic Nanoparticles. J. Nanosci. Nanotechnol. 2011, 11(6), 4793–4799. DOI: 10.1166/jnn.2011.4192.
  • Young, B. J.; Riera, N. I.; Beily, M. E.; Bres, P. A.; Crespo, D. C.; Ronco, A. E. Toxicity of the Effluent from an Anaerobic Bioreactor Treating Cereal Residues on Lactuca Sativa. Eco. Env. Saf. 2012, 76, 182–186. DOI: 10.1016/j.ecoenv.2011.09.019.
  • Murphy, D. B.;. Fundamentals of Light Microscopy and Electronic Imaging, 2nd ed.; John Wiley & Sons: New York, NY, 2002.
  • Qi, T.; Huang, C.; Yan, S.; Li, X. J.; Pan, S. Y. Synthesis, Characterization and Adsorption Properties of Magnetite/reduced Graphene Oxide Nanocomposites. Talanta. 2015, 144, 1116–1124. DOI: 10.1016/j.talanta.2015.07.089.
  • Hatel, R.; El Majdoub, S.; Bakour, A.; Khenfouch, M.; Baitoul, M. Graphene oxide/Fe3O4 Nanorods Composite: Structural and Raman Investigation. J. Phy. Conf. Series. 2018, 1081(1), 012006.
  • Raghu, M. S.; Kumar, K. Y.; Prashanth, M. K.; Prasanna, B. P.; Vinuth, R.; Kumar, C. P. Adsorption and Antimicrobial Studies of Chemically Bonded Magnetic Graphene oxide-Fe3O4 Nanocomposite for Water Purification. J. Water Process Eng. 2017, 17, 22–31. DOI: 10.1016/j.jwpe.2017.03.001.
  • Shahriary, L.; Athawale, A. A. Graphene Oxide Synthesized by Using Modified Hummers Approach. Int. J. Renew. Energy Environ. Eng. 2014, 2(01), 58–63.
  • Yao, Y.; Miao, S.; Liu, S.; Ma, L. P.; Sun, H.; Wang, S. Synthesis, Characterization, and Adsorption Properties of Magnetic Fe3O4@ Graphene Nanocomposite. Chem. Eng. J. 2012, 184, 326–332. DOI: 10.1016/j.cej.2011.12.017.
  • Sureshkumar, V.; Daniel, S. K.; Ruckmani, K.; Sivakumar, M. Fabrication of Chitosan–magnetite Nanocomposite Strip for Chromium Removal. Appl. Nanosci. 2016, 6(2), 277–285. DOI: 10.1007/s13204-015-0429-3.
  • Liu, W.; Qian, J.; Wang, K.; Xu, H.; Jiang, D.; Liu, Q.; Li, H. Magnetically Separable Fe3O4 Nanoparticles-decorated Reduced Graphene Oxide Nanocomposite for Catalytic Wet Hydrogen Peroxide Oxidation. J. Inorg. Org. Polym. Mat. 2013, 23(4), 907–916. DOI: 10.1007/s10904-013-9863-4.
  • Xing, S.; Zhou, Z.; Ma, Z.; Wu, Y. Characterization and Reactivity of Fe3O4/FeMnOx Core/shell Nanoparticles for Methylene Blue Discoloration with H2O2. Appl. Catal. B. 2011, 107(3–4), 386–392. DOI: 10.1016/j.apcatb.2011.08.002.
  • Ruellas, T. M. O.; Domingos, G. H. S.; Peçanha, L. O. O.; Maestrelli, S. C.; Giraldi, T. R. Photodegradation of Rhodamine B Catalyzed by ZnO Pellets; Cerâmica, 2019; pp 6547–6553.
  • Morales, C. G.; Báez, D. M.; Granado, Y.; Ronco, A.; Sobrero, C.; Bulus, G.; Sánchez-Bain, B. Ensayos toxicológicos y métodos de evaluación de calidad de aguas, 1st ed.; Centro Int. de Inv. para el Desarrollo: Ottawa: ON, 2004.
  • Li, W.; Zhao, Y.; Yan, X.; Duan, J.; Saint, C. P.; Beecham, S. Transformation Pathway and Toxicity Assessment of Malathion in Aqueous Solution during UV Photolysis and Photocatalysis. Chemosphere. 2019, 234, 204–214. DOI: 10.1016/j.chemosphere.2019.06.058.
  • Gerber, M. D.; Lucia, T., Jr; Correa, L.; Neto, J. E. P.; Correa, É. K. Phytotoxicity of Effluents from Swine Slaughterhouses Using Lettuce and Cucumber Seeds as Bioindicators. Sci. Total Env. 2017, 592, 86–90. DOI: 10.1016/j.scitotenv.2017.03.075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.