208
Views
8
CrossRef citations to date
0
Altmetric
Photocatalysis

Photocatalytic reduction of Cr(VI) from aqueous solution by visible light/CuO-Kaolin: Optimization and modeling of key parameters using central composite design (CCD)

, , , &
Pages 1253-1271 | Received 20 May 2019, Accepted 14 Apr 2020, Published online: 14 May 2020

References

  • Qin, F.; Wang, R.; Li, G.; Tian, F.; Zhao, H.; Chen, R. Highly Efficient Photocatalytic Reduction of Cr (VI) by Bismuth Hollow Nanospheres. Catal. Commun. 2013, 42, 14. DOI: 10.1016/j.catcom.2013.07.039.
  • Wen, Z.; Zhang, Y.; Guo, S.; Chen, R. Facile Template-free Fabrication of Iron Manganese Bimetal Oxides Nanospheres with Excellent Capability for Heavy Metals Reduction. J. Colloid Interface Sci. 2017, 486, 211. DOI: 10.1016/j.jcis.2016.09.026.
  • Zhao, J.; Han, Q.; Zhu, J.; Wu, X.; Wang, X. Synthesis of Bi Nanowire Networks and Their Superior Photocatalytic Activity for Cr (VI) Reduction. Nanoscale. 2014, 6, 10062. DOI: 10.1039/C4NR01660B.
  • Zuo-Jiang, S.; Ma, J.; Wang, Y.; Guan, W.; Zhu, Y.; Chen, K. Facile Design of Zinc Alkoxide-armed ZnO Adsorbents for Cr(VI) Reduction with Unique Ultraviolet Regeneration Behavior. Sep. Purif. Technol. 2019, 213, 401. DOI: 10.1016/j.seppur.2018.12.034.
  • Yin, R.; Ling, L.; Xiang, Y.; Yang, Y.; Bokare, A. D.; Shang, C. Enhanced Photocatalytic Reduction of Chromium (VI) by Cu-doped TiO2 under UV-A Irradiation. Sep. Purif. Technol. 2018, 190, 53. DOI: 10.1016/j.seppur.2017.08.042.
  • Sandoval-Olvera, I. G.; González-Muñoz, P.; Palacio, L.; Hernández, A.; Ávila-Rodríguez, M.; Prádanos, P. Ultrafiltration Membranes Modified by PSS Deposition and Plasma Treatment for Cr(VI) Reduction. Sep. Purif. Technol. 2019, 210, 371. DOI: 10.1016/j.seppur.2018.08.023.
  • Idris, A.; Hassan, N.; Ismail, N. S. M.; Misran, E.; Yusof, N. M.; Ngomsik, A.-F.; Bee, A. Photocatalytic Magnetic Separable Beads for Chromium (VI) Reduction. Water Res. 2010, 44, 1683. DOI: 10.1016/j.watres.2009.11.026.
  • Kebir, M.; Chabani, M.; Nasrallah, N.; Bensmaili, A.; Trari, M. Coupling Adsorption with Photocatalysis Process for the Cr (VI) Reduction. Desalination. 2011, 270, 166. DOI: 10.1016/j.desal.2010.11.041.
  • Litter, M. I.;. Heterogeneous Photocatalysis: Transition Metal Ions in Photocatalytic Systems. Appl. Catal. B Environ. 1999, 23, 89. DOI: 10.1016/S0926-3373(99)00069-7.
  • Kazemi, M.; Jahanshahi, M.; Peyravi, M. Hexavalent Chromium Reduction by Multilayer Membrane Assisted by Photocatalytic Couple Nanoparticle from Both Permeate and Retentate. J. Hazard. Mater. 2018, 344, 12. DOI: 10.1016/j.jhazmat.2017.09.059.
  • Eskandarloo, H.; Badiei, A.; Behnajady, M. A.; Ziarani, G. M. Minimization of Electrical Energy Consumption in the Photocatalytic Reduction of Cr (VI) by Using Immobilized Mg, Ag Co-impregnated TiO 2 Nanoparticles. RSC Adv. 2014, 4, 28587. DOI: 10.1039/c4ra03418j.
  • Alidokht, L.; Khataee, A.; Reyhanitabar, A.; Oustan, S. Reductive Reduction of Cr (VI) by Starch-stabilized Fe0 Nanoparticles in Aqueous Solution. Desalination. 2011, 270, 105. DOI: 10.1016/j.desal.2010.11.028.
  • Alidokht, L.; Khataee, A. R.; Reyhanitabar, A.; Oustan, S. Cr (VI) Immobilization Process in a Cr‐spiked Soil by Zerovalent Iron Nanoparticles: Optimization Using Response Surface Methodology. Clean–Soil Air Water. 2011, 39, 633. DOI: 10.1002/clen.201000461.
  • Liu, Z.; Wang, G.; Zhao, X. Reduction of Cr (VI) from Aqueous Solution Using Ultrafine Coal Fly Ash. J. Wuhan Univ. Technol.Mater. Sci. Ed. 2010, 25, 323. DOI: 10.1007/s11595-010-2323-x.
  • Shams Khorramabadi, G.; Darvishi Cheshmeh Soltani, R.; Rezaee, A.; Khataee, A. R.; Jonidi Jafari, A. Utilisation of Immobilised Activated Sludge for the Biosorption of Chromium (VI). Can. J. Chem. Eng. 2012, 90, 1539. DOI: 10.1002/cjce.20661.
  • Rezaee, A.; Masoumbeigi, H.; Soltani, R. D. C.; Khataee, A. R.; Hashemiyan, S. Photocatalytic Decolorization of Methylene Blue Using Immobilized ZnO Nanoparticles Prepared by Solution Combustion Method. Desalin. Water Treat. 2012, 44, 174. DOI: 10.1080/19443994.2012.691700.
  • Shao, D.; Wang, X.; Fan, Q. Photocatalytic Reduction of Cr (VI) to Cr (III) in Solution Containing ZnO or ZSM-5 Zeolite Using Oxalate as Model Organic Compound in Environment. Microporous Mesoporous Mater. 2009, 117, 243. DOI: 10.1016/j.micromeso.2008.06.026.
  • Shirzad Siboni, M.; Samadi, M.; Yang, J.; Lee, S. Photocatalytic Reduction of Cr (VI) and Ni (II) in Aqueous Solution by Synthesized Nanoparticle ZnO under Ultraviolet Light Irradiation: A Kinetic Study. Environ. Technol. 2011, 32, 1573. DOI: 10.1080/09593330.2010.543933.
  • Zhang, N.; Zhang, Y.; Xu, Y.-J. Recent Progress on Graphene-based Photocatalysts: Current Status and Future Perspectives. Nanoscale. 2012, 4, 5792. DOI: 10.1039/c2nr31480k.
  • Zhang, Y.; Tang, Z.-R.; Fu, X.; Xu, Y.-J. Engineering the Unique 2D Mat of Graphene to Achieve graphene-TiO2 Nanocomposite for Photocatalytic Selective Transformation: What Advantage Does Graphene Have over Its Forebear Carbon Nanotube? ACS Nano. 2011, 5, 7426. DOI: 10.1021/nn202519j.
  • Mohamed, A.; Ghobara, M. M.; Abdelmaksoud, M. K.; Mohamed, G. G. A Novel and Highly Efficient Photocatalytic Degradation of Malachite Green Dye via Surface Modified Polyacrylonitrile Nanofibers/biogenic Silica Composite Nanofibers. Sep. Purif. Technol. 2019, 210, 935. DOI: 10.1016/j.seppur.2018.09.014.
  • Abbasi, A.; Hamadanian, M.; Gholami, T.; Salavati-Niasari, M.; Sadri, N. Facile Preparation of PbCrO4 and PbCrO4/Ag Nanostructure as an Effective Photocatalyst for Degradation of Organic Contaminants. Sep. Purif. Technol. 2019, 209, 79. DOI: 10.1016/j.seppur.2018.07.018.
  • Ferreira, L. C.; Lucas, M. S.; Fernandes, J. R.; Tavares, P. B. Photocatalytic Oxidation of Reactive Black 5 with UV-A LEDs. J. Environ. Chem. Eng. 2016, 4, 109. DOI: 10.1016/j.jece.2015.10.042.
  • Mikhailov, O. V.;. Progress in the Synthesis of Ag Nanoparticles Having Manifold Geometric Forms. Rev. Inorg. Chem. 2018, 38, 21. DOI: 10.1515/revic-2017-0016.
  • Tian, X.; Wang, Q.; Zhao, Q.; Qiu, L.; Zhang, X.; Gao, S. SILAR Deposition of CuO Nanosheets on the TiO2 Nanotube Arrays for the High Performance Solar Cells and Photocatalysts. Sep. Purif. Technol. 2019, 209, 368. DOI: 10.1016/j.seppur.2018.07.057.
  • Nguyen, D. C. T.; Cho, K. Y.; Oh, W.-C. Mesoporous CuO-graphene Coating of Mesoporous TiO2 for Enhanced Visible-light Photocatalytic Activity of Organic Dyes. Sep. Purif. Technol. 2019, 211, 646. DOI: 10.1016/j.seppur.2018.10.009.
  • Bordbar, M.; Negahdar, N.; Nasrollahzadeh, M. Melissa Officinalis L. Leaf Extract Assisted Green Synthesis of CuO/ZnO Nanocomposite for the Reduction of 4-nitrophenol and Rhodamine B. Sep. Purif. Technol. 2018, 191, 295. DOI: 10.1016/j.seppur.2017.09.044.
  • Li, J.; Peng, T.; Zhang, Y.; Zhou, C.; Zhu, A. Polyaniline Modified SnO2 Nanoparticles for Efficient Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light. Sep. Purif. Technol. 2018, 201, 120. DOI: 10.1016/j.seppur.2018.03.010.
  • Luo, J.; Li, R.; Chen, Y.; Zhou, X.; Ning, X.; Zhan, L.; Ma, L.; Xu, X.; Xu, L.; Zhang, L. Rational Design of Z-scheme LaFeO3/SnS2 Hybrid with Boosted Visible Light Photocatalytic Activity Towards Tetracycline Degradation. Sep. Purif. Technol. 2019, 210, 417. DOI: 10.1016/j.seppur.2018.08.028.
  • Lu, D.; Kumar Kondamareddy, K.; Fan, H.; Gao, B.; Wang, J.; Wang, J.; Hao, H. Highly Improved Visible-light-driven Photocatalytic Reduction of Cr(VI) over Yttrium Doped H-Titanate Nanosheets and Its Synergy with Organic Pollutant Oxidation. Sep. Purif. Technol. 2019, 210, 775. DOI: 10.1016/j.seppur.2018.09.004.
  • Cui, Y.; Li, M.; Wang, H.; Yang, C.; Meng, S.; Chen, F. In-situ Synthesis of Sulfur Doped Carbon Nitride Microsphere for Outstanding Visible Light Photocatalytic Cr(VI) Reduction. Sep. Purif. Technol. 2018, 199, 251. DOI: 10.1016/j.seppur.2018.01.037.
  • Chong, M. N.; Jin, B.; Zhu, H. Y.; Chow, C.; Saint, C. Application of H-titanate Nanofibers for Degradation of Congo Red in an Annular Slurry Photoreactor. Chem. Eng. J. 2009, 150, 49. DOI: 10.1016/j.cej.2008.12.002.
  • Fujishima, A.; Zhang, X.; Tryk, D. A. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515. DOI: 10.1016/j.surfrep.2008.10.001.
  • Shirzad-Siboni, M.; Khataee, A.; Joo, S. W. Kinetics and Equilibrium Studies of Reduction of an Azo Dye from Aqueous Solution by Adsorption onto Scallop. J. Ind. Eng. Chem. 2014, 20, 610. DOI: 10.1016/j.jiec.2013.05.023.
  • Mohagheghian, A.; Ayagh, K.; Godini, K.; Shirzad-Siboni, M. Photocatalytic Reduction of Cr (VI) from Synthetic, Real Drinking Waters and Electroplating Wastewater by Synthesized Amino-functionalized Fe3O4–WO3 Nanoparticles by Visible Light. J. Ind. Eng. Chem. 2018, 59, 169. DOI: 10.1016/j.jiec.2017.10.021.
  • Shirzad-Siboni, M.; Khataee, A.; Vafaei, F.; Joo, S. W. Comparative Reduction of Two Textile Dyes from Aqueous Solution by Adsorption onto Marine-source Waste Shell: Kinetic and Isotherm Studies. Korean J. Chem. Eng. 2014, 31, 1451. DOI: 10.1007/s11814-014-0085-4.
  • Shirzad-Siboni, M.; Khataee, A.; Vahid, B.; Joo, S. W. Synthesis, Characterization and Immobilization of ZnO Nanosheets on Scallop Shell for Photocatalytic Degradation of an Insecticide. Sci. Adv. Mater. 2015, 7, 806. DOI: 10.1166/sam.2015.2163.
  • APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater; WEF, Washington, DC, 2000.
  • Aleboyeh, A.; Daneshvar, N.; Kasiri, M. Optimization of CI Acid Red 14 Azo Dye Reduction by Electrocoagulation Batch Process with Response Surface Methodology. Chem. Eng. Process. 2008, 47, 827. DOI: 10.1016/j.cep.2007.01.033.
  • Khataee, A.;. Optimization of UV‐promoted Peroxydisulphate Oxidation of CI Basic Blue 3 Using Response Surface Methodology. Environ. Technol. 2010, 31, 73. DOI: 10.1080/09593330903358302.
  • Patterson, A.;. The Scherrer Formula for X-ray Particle Size Determination. ?phys. Rev. 1939, 56, 978. DOI: 10.1103/PhysRev.56.978.
  • Padil, V. V. T.; Černík, M. Green Synthesis of Copper Oxide Nanoparticles Using Gum Karaya as a Biotemplate and Their Antibacterial Application. Int. J. Nanomed. 2013, 8, 889. DOI: 10.2147/IJN.S37465.
  • Bashir, M. J.; Aziz, H. A.; Yusoff, M. S.; Adlan, M. N. Application of Response Surface Methodology (RSM) for Optimization of Ammoniacal Nitrogen Reduction from Semi-aerobic Landfill Leachate Using Ion Exchange Resin. Desalination. 2010, 254, 154. DOI: 10.1016/j.desal.2009.12.002.
  • Shirzad-Siboni, M.; Farrokhi, M.; Darvishi Cheshmeh Soltani, R.; Khataee, A.; Tajassosi, S. Photocatalytic Reduction of Hexavalent Chromium over ZnO Nanorods Immobilized on Kaolin. Ind. Eng. Chem. Res. 2014, 53, 1079. DOI: 10.1021/ie4032583.
  • Diao, Z.-H.; Xu, X.-R.; Liu, F.-M.; Sun, Y.-X.; Zhang, Z.-W.; Sun, K.-F.; Wang, S.-Z.; Cheng, H. Photocatalytic Degradation of Malachite Green by Pyrite and Its Synergism with Cr (VI) Reduction: Performance and Reaction Mechanism. Sep. Purif. Technol. 2015, 154, 168. DOI: 10.1016/j.seppur.2015.09.027.
  • Ku, Y.; Jung, I.-L. Photocatalytic Reduction of Cr (VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide. Water Res. 2001, 35, 135. DOI: 10.1016/S0043-1354(00)00098-1.
  • Liu, S.;. Reduction of Copper (VI) from Aqueous Solution by Ag/TiO2 Photocatalysis. Bull. Environ. Contam. Toxicol. 2005, 74, 706. DOI: 10.1007/s00128-005-0640-0.
  • Mohagheghian, A.; Karimi, S.-A.; Yang, J.-K.; Shirzad-Siboni, M. Photocatalytic Degradation of a Textile Dye by Illuminated Tungsten Oxide Nanopowder. J. Adv. Oxid. Technol. 2015, 18, 61. DOI: 10.1515/jaots-2015-0108.
  • Chenthamarakshan, C.; Rajeshwar, K.; Wolfrum, E. J. Heterogeneous Photocatalytic Reduction of Cr (VI) in UV-irradiated Titania Suspensions: Effect of Protons, Ammonium Ions, and Other Interfacial Aspects. Langmuir. 2000, 16, 2715. DOI: 10.1021/la9911483.
  • Yang, J.-K.; Lee, S.-M. Reduction of Cr (VI) and Humic Acid by Using TiO2 Photocatalysis. Chemosphere. 2006, 63, 1677. DOI: 10.1016/j.chemosphere.2005.10.005.
  • Kobya, M.;. Reduction of Cr (VI) from Aqueous Solutions by Adsorption onto Hazelnut Shell Activated Carbon: Kinetic and Equilibrium Studies. Bioresour. Technol. 2004, 91, 317. DOI: 10.1016/j.biortech.2003.07.001.
  • Schrank, S.; José, H.; Moreira, R. Simultaneous Photocatalytic Cr (VI) Reduction and Dye Oxidation in a TiO2 Slurry Reactor. J. Photochem. Photobiol. A Chem. 2002, 147, 71. DOI: 10.1016/S1010-6030(01)00626-8.
  • Samarghandi, M.; Yang, J.; Lee, S.; Giahi, O.; Shirzad-Siboni, M. Effect of Different Type of Organic Compounds on the Photocatalytic Reduction of Cr (VI) in Presence of ZnO Nanoparticles. Desalin. Water Treat. 2014, 52, 1531. DOI: 10.1080/19443994.2013.797624.
  • Yang, J.; Lee, S.; Shirzad-Siboni, M. Effect of Different Types of Organic Compounds on the Photocatalytic Reduction of Cr (VI). Environ. Technol. 2012, 33, 2027. DOI: 10.1080/09593330.2012.655325.
  • Antonopoulou, M.; Chondrodimou, I.; Bairamis, F.; Giannakas, A.; Konstantinou, I. Photocatalytic Reduction of Cr (VI) by char/TiO2 Composite Photocatalyst: Optimization and Modeling Using the Response Surface Methodology (RSM). Environ. Sci. Pollut. Res. 2017, 24, 1063. DOI: 10.1007/s11356-016-6779-x.
  • Lei, X.; Zhang, Z.; Wu, Z.; Piao, Y.; Chen, C.; Li, X.; Xue, X.; Yang, H. Synthesis and Characterization of Fe, N and C Tri-doped Polymorphic TiO2 and the Visible Light Photocatalytic Reduction of Cr (VI). Sep. Purif. Technol. 2017, 174, 66. DOI: 10.1016/j.seppur.2016.09.039.
  • Sabonian, M.; Behnajady, M. A. Artificial Neural Network Modeling of Cr (VI) Photocatalytic Reduction with TiO2-P25 Nanoparticles Using the Results Obtained from Response Surface Methodology Optimization. Desalin. Water Treat. 2015, 56, 2906.
  • Saien, J.; Azizi, A.; Soleymani, A. Parameter Evaluation, Kinetics, and Energy Consumption for Cr (VI) Photocatalytic Reduction under Mild Conditions. J. Iran. Chem. Soc. 2014, 11, 1439. DOI: 10.1007/s13738-014-0419-5.
  • Joshi, K.; Shrivastava, V. Photocatalytic Degradation of Chromium (VI) from Wastewater Using Nanomaterials like TiO 2, ZnO, and CdS. Appl. Nanosci. 2011, 1, 147. DOI: 10.1007/s13204-011-0023-2.
  • Zhao, Y.; Zhao, D.; Chen, C.; Wang, X. Enhanced Photo-reduction and Reduction of Cr (VI) on Reduced Graphene Oxide Decorated with TiO2 Nanoparticles. J. Colloid Interface Sci. 2013, 405, 211. DOI: 10.1016/j.jcis.2013.05.004.
  • Luo, S.; Qin, F.; Zhao, H.; Liu, Y.; Chen, R. Fabrication Uniform Hollow Bi2S3 Nanospheres via Kirkendall Effect for Photocatalytic Reduction of Cr (VI) in Electroplating Industry Wastewater. J. Hazard. Mater. 2017, 340, 253. DOI: 10.1016/j.jhazmat.2017.06.044.
  • Naimi-Joubani, M.; Shirzad-Siboni, M.; Yang, J.-K.; Gholami, M.; Farzadkia, M. Photocatalytic Reduction of Hexavalent Chromium with Illuminated ZnO/TiO2 Composite. J. Ind. Eng. Chem. 2015, 22, 317. DOI: 10.1016/j.jiec.2014.07.025.
  • Moniem, S. M. A.; Ali, M. E.; Gad-Allah, T. A.; Khalil, A. S.; Ulbricht, M.; El-Shahat, M.; Ashmawy, A. M.; Ibrahim, H. S. Detoxification of Hexavalent Chromium in Wastewater Containing Organic Substances Using simonkolleite-TiO2 Photocatalyst. Process Saf. Environ. Prot. 2015, 95, 247. DOI: 10.1016/j.psep.2015.03.010.
  • Wang, N.; Zhu, L.; Deng, K.; She, Y.; Yu, Y.; Tang, H. Visible Light Photocatalytic Reduction of Cr (VI) on TiO2 in Situ Modified with Small Molecular Weight Organic Acids. Appl. Catal. B Environ. 2010, 95, 400. DOI: 10.1016/j.apcatb.2010.01.019.
  • Wu, Q.; Zhao, J.; Qin, G.; Wang, C.; Tong, X.; Xue, S. Photocatalytic Reduction of Cr (VI) with TiO2 Film under Visible Light. Appl. Catal. B Environ. 2013, 142, 142. DOI: 10.1016/j.apcatb.2013.04.056.
  • Wang, Q.; Chen, X.; Yu, K.; Zhang, Y.; Cong, Y. Synergistic Photosensitized Reduction of Cr (VI) and Rhodamine B Dye on Amorphous TiO2 under Visible Light Irradiation. J. Hazard. Mater. 2013, 246, 135. DOI: 10.1016/j.jhazmat.2012.12.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.