383
Views
1
CrossRef citations to date
0
Altmetric
Water treatment

Steady and controlled desalination via capacitive deionization: performance assessment and optimization of hybrid CV-CC process

, , , , &
Pages 1272-1289 | Received 23 Dec 2019, Accepted 14 Apr 2020, Published online: 12 May 2020

References

  • Hall, C. A. S.; Day, J. W. Revisiting the Limits to Growth after Peak Oil: In the 1970s a Rising World Population and the Finite Resources Available to Support It Were Hot Topics. Interest Faded—but It’s Time to Take Another Look. Am. Sci. 2009, 97, 230–237.
  • T.W.R. Group. Charting Our Water Future Full Report, 2010.
  • Ying, T. Y.; Yang, K. L.; Yiacoumi, S.; Tsouris, C. Electrosorption of Ions from Aqueous Solutions by Nanostructured Carbon Aerogel. J. Colloid Interface Sci. 2002, 250, 18–27.
  • Anderson, M. A.; Cudero, A. L.; Palma, J. Capacitive Deionization as an Electrochemical Means of Saving Energy and Delivering Clean Water. Comparison to Present Desalination Practices: Will It Compete? Electrochim. Acta. 2010, 55, 3845–3856.
  • Fujioka, R.; Wang, L. P.; Dodbiba, G.; Fujita, T. Application of Progressive Freeze-concentration for Desalination. Desalination. 2013, 319, 33–37.
  • Demirer, O. N.; Naylor, R. M.; Rios Perez, C. A.; Wilkes, E.; Hidrovo, C. Energetic Performance Optimization of a Capacitive Deionization System Operating with Transient Cycles and Brackish Water. Desalination. 2013, 314, 130–138.
  • Arnold, B. B.; Murphy, G. W. Studies On The Electrochemistry Of Carbon And Chemically-Modified Carbon Surfaces. J. Phys. Chem. 1961, 65, 135–138.
  • Andelman, M.;. Flow through Capacitor Basics. Sep. Purif. Technol. 2011, 80, 262–269.
  • Campione, A.; Gurreri, L.; Ciofalo, M.; Micale, G.; Tamburini, A.; Cipollina, A. Electrodialysis for Water Desalination: A Critical Assessment of Recent Developments on Process Fundamentals, Models and Applications. Desalination. 2018, 434, 121–160.
  • Biesheuvel, P. M.; Zhao, R.; Porada, S.; van der Wal, A. Theory of Membrane Capacitive Deionization Including the Effect of the Electrode Pore Space. J. Colloid Interface Sci. 2011, 360, 239–248.
  • Długołecki, P.; van der Wal, A. Energy Recovery in Membrane Capacitive Deionization. Environ. Sci. Technol. 2013, 47, 4904–4910.
  • Kang, J.; Kim, T.; Shin, H.; Lee, J.; Ha, J.-I.; Yoon, J. J. D. Direct Energy Recovery System for Membrane Capacitive Deionization. Desalination. 2016, 398, 144–150.
  • Kang, J.; Kim, T.; Shin, H.; Lee, J.; Ha, J.-I.; Yoon, J. Direct Energy Recovery System for Membrane Capacitive Deionization. Desalination. 2016, 398, 144–150.
  • Khayet, M.; Matsuura, T. Membrane Distillation: Principles and Applications; Elsevier, 2011.
  • Ng, K. C.; Thu, K.; Kim, Y.; Chakraborty, A.; Amy, G. Adsorption Desalination: An Emerging Low-cost Thermal Desalination Method. Desalination. 2013, 308, 161–179.
  • Micale, G.; Rizzuti, L.; Cipollina, A. Seawater Desalination: Conventional and Renewable Energy Processes; Springer, 2009.
  • Welgemoed, T. Capacitive Deionization Technology: Development and Evaluation of an Industrial Prototype; University of Pretori, 2005.
  • Zhao, R.; Biesheuvel, P. M.; Miedema, H.; Bruning, H.; van der Wal, A. Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization. J. Phys. Chem. Lett. 2010, 1, 205–210.
  • Dutta, S.; Huang, S.-Y.; Chen, C.; Chen, J. E.; Alothman, Z. A.; Yamauchi, Y.; Hou, C.-H.; Wu, K. C. W. Cellulose Framework Directed Construction of Hierarchically Porous Carbons Offering High-Performance Capacitive Deionization of Brackish Water. ACS Sustainable Chem. Eng. 2016, 4, 1885–1893.
  • Wang, M.; Xu, X.; Tang, J.; Hou, S.; Hossain, M. S. A.; Pan, L.; Yamauchi, Y. High Performance Capacitive Deionization Electrodes Based on Ultrathin Nitrogen-doped Carbon/graphene Nano-sandwiches. Chem. Commun. 2017, 53, 10784–10787.
  • Xu, X.; Allah, A. E.; Wang, C.; Tan, H.; Farghali, A. A.; Khedr, M. H.; Malgras, V.; Yang, T.; Yamauchi, Y. Capacitive Deionization Using Nitrogen-doped Mesostructured Carbons for Highly Efficient Brackish Water Desalination. Chem. Eng. J. 2019, 362, 887–896.
  • Xu, X.; Tan, H.; Wang, Z.; Wang, C.; Pan, L.; Kaneti, Y. V.; Yang, T.; Yamauchi, Y. Extraordinary Capacitive Deionization Performance of Highly-ordered Mesoporous Carbon Nano-polyhedra for Brackish Water Desalination. Environ. Sci.: Nano. 2019, 6, 981–989.
  • Wang, Z.; Xu, X.; Kim, J.; Malgras, V.; Mo, R.; Li, C.; Lin, Y.; Tan, H.; Tang, J.; Pan, L.; et al. Nanoarchitectured Metal–organic Framework/polypyrrole Hybrids for Brackish Water Desalination Using Capacitive Deionization. Mater. Horiz. 2019, 6, 1433–1437.
  • Xu, X.; Yang, T.; Zhang, Q.; Xia, W.; Ding, Z.; Eid, K.; Abdullah, A.; Hossain, S.; Zhang, S.; Tang, J.; et al. Ultrahigh Capacitive Deionization Performance by 3D Interconnected MOF-Derived Nitrogen-Doped Carbon Tubes. Chem. Eng. J. 2020, 390, 124493.
  • Cohen, I.; Avraham, E.; Noked, M.; Soffer, A.; Aurbach, D. Enhanced Charge Efficiency in Capacitive Deionization Achieved by Surface-treated Electrodes and by Means of a Third Electrode. J. Phys. Chem. C. 2011, 115, 19856–19863.
  • Huang, W.; Zhang, Y.; Bao, S.; Cruz, R.; Song, S. J. D. Desalination by Capacitive Deionization Process Using Nitric Acid-modified Activated Carbon as the Electrodes. Desalination. 2014, 340, 67–72.
  • Oren, Y. J. D.;. Capacitive Deionization (CDI) for Desalination and Water Treatment—past, Present and Future (A Review). Desalination. 2008, 228, 10–29.
  • Porada, S.; Weinstein, L.; Dash, R.; Van Der Wal, A.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P. M. Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes. ACS Appl. Mater. Interfaces. 2012, 4, 1194–1199.
  • Villar, I.; Roldan, S.; Ruiz, V.; Granda, M.; Blanco, C.; Menéndez, R.; Santamaria, R. J. E. Capacitive Deionization of NaCl Solutions with Modified Activated Carbon Electrodes. Fuels. 2010, 24, 3329–3333.
  • Farmer, J. C.; Fix, D. V.; Mack, G. V.; Pekala, R. W.; Poco, J. F. Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes. J. Electrochem. Soc. 1996, 143, 159–169.
  • Gao, X.; Omosebi, A.; Landon, J.; Liu, K. Surface Charge Enhanced Carbon Electrodes for Stable and Efficient Capacitive Deionization Using Inverted Adsorption–desorption Behavior. Energy Environ. Sci. 2015, 8, 897–909.
  • Cohen, I.; Avraham, E.; Bouhadana, Y.; Soffer, A.; Aurbach, D. The Effect of the Flow-regime, Reversal of Polarization, and Oxygen on the Long Term Stability in Capacitive De-ionization Processes. Electrochim. Acta. 2015, 153, 106–114.
  • Xu, X.; Tang, J.; Kaneti, Y. V.; Tan, H.; Chen, T.; Pan, L.; Yang, T.; Bando, Y.; Yamauchi, Y. Unprecedented Capacitive Deionization Performance of Interconnected Iron–nitrogen-doped Carbon Tubes in Oxygenated Saline Water. Mater. Horiz. 2020.
  • Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Review on the Science and Technology of Water Desalination by Capacitive Deionization. Prog. Mater. Sci. 2013, 58, 1388–1442.
  • Suss, M. E.; Porada, S.; Sun, X.; Biesheuvel, P. M.; Yoon, J.; Presser, V. Water Desalination via Capacitive Deionization: What Is It and What Can We Expect from It? Energy Environ. Sci. 2015, 8, 2296–2319.
  • Biesheuvel, P. M.; van der Wal, A. Membrane Capacitive Deionization. J. Membr. Sci. 2010, 346, 256–262.
  • Zhao, R.; Biesheuvel, P. M.; van der Wal, A. Energy Consumption and Constant Current Operation in Membrane Capacitive Deionization. Energy Environ. Sci. 2012, 5, 9520–9527.
  • Saleem, M. W.; Jande, Y. A. C.; Asif, M.; Kim, W.-S. Hybrid CV-CC Operation of Capacitive Deionization in Comparison with Constant Current and Constant Voltage. Sep. Sci. Technol. 2016, 51, 1063–1069.
  • Dykstra, J. E.; Porada, S.; van der Wal, A.; Biesheuvel, P. M. Energy Consumption in Capacitive Deionization – Constant Current versus Constant Voltage Operation. Water Res. 2018, 143, 367–375.
  • Zhao, R.; Biesheuvel, P.; Van der Wal, A. J. E. Energy Consumption and Constant Current Operation in Membrane Capacitive Deionization. Energy Environ. Sci. 2012, 5, 9520–9527.
  • Biesheuvel, P.; Zhao, R.; Porada, S.; Van der Wal, A. J. Theory of Membrane Capacitive Deionization Including the Effect of the Electrode Pore Space. J. Colloid Interface Sci. 2011, 360, 239–248.
  • Zheng, W.; Mossad, M.; Zou, L. A Study of the Long-term Operation of Capacitive Deionisation in Inland Brackish Water Desalination. Desalination. 2013, 320, 80–85.
  • Wang, C.; Song, H.; Zhang, Q.; Wang, B.; Li, A. Parameter Optimization Based on Capacitive Deionization for Highly Efficient Desalination of Domestic Wastewater Biotreated Effluent and the Fouled Electrode Regeneration. Desalination. 2015, 365, 407–415.
  • Kim, Y.-J.; Hur, J.; Bae, W.; Choi, J.-H. Desalination of Brackish Water Containing Oil Compound by Capacitive Deionization Process. Desalination. 2010, 253, 119–123.
  • Xu, P.; Drewes, J. E.; Heil, D.; Wang, G. Treatment of Brackish Produced Water Using Carbon Aerogel-based Capacitive Deionization Technology. Water Res. 2008, 42, 2605–2617.
  • Kim, J.; Peck, D.-H.; Lee, B.; Yoon, S.-H.; Jung, D.-H. An Asymmetrical Activated Carbon Electrode Configuration for Increased Pore Utilization in a Membrane-assisted Capacitive Deionization System. New Carbon Mater. 2016, 31, 378–385.
  • Andelman, M. J. S.;. Flow through Capacitor Basics. Sep. Purif. Technol. 2011, 80, 262–269.
  • Hawks, S. A.; Ramachandran, A.; Porada, S.; Campbell, P. G.; Suss, M. E.; Biesheuvel, P. M.; Santiago, J. G.; Stadermann, M. Performance Metrics for the Objective Assessment of Capacitive Deionization Systems. Water Res. 2019, 152, 126–137.
  • García-Quismondo, E.; Santos, C.; Soria, J.; Palma, J.; Anderson, M. A. New Operational Modes to Increase Energy Efficiency in Capacitive Deionization Systems. Environ. Sci. Technol. 2016, 50, 6053–6060.
  • Yang, J.; Zou, L.; Song, H.; Hao, Z. Development of Novel MnO2/nanoporous Carbon Composite Electrodes in Capacitive Deionization Technology. Desalination. 2011, 276, 199–206.
  • Choi, J.-H.;. Comparison of Constant Voltage (CV) and Constant Current (CC) Operation in the Membrane Capacitive Deionisation Process. Desalin. Water Treat. 2015, 56, 921–928.
  • Zhao, R.; Satpradit, O.; Rijnaarts, H. H. M.; Biesheuvel, P. M.; van der Wal, A. Optimization of Salt Adsorption Rate in Membrane Capacitive Deionization. Water Res. 2013, 47, 1941–1952.
  • Murth, Z. V. P.; Vengal, J. C. Optimization of a Reverse Osmosis System Using Genetic Algorithm. Sep. Sci. Technol. 2006, 41, 647–663.
  • Biesheuvel, P. M.; van Limpt, B.; van der Wal, A. Dynamic Adsorption/Desorption Process Model for Capacitive Deionization. J. Phys. Chem. C. 2009, 113, 5636–5640.
  • Jande, Y. A. C.; Kim, W. S. Predicting the Lowest Effluent Concentration in Capacitive Deionization. Sep. Purif. Technol. 2013, 115, 224–230.
  • Jande, Y. A. C.; Kim, W. S. Desalination Using Capacitive Deionization at Constant Current. Desalination. 2013, 329, 29–34.
  • Zhao, R.; Biesheuvel, P.; Van der Wal, A. Energy Consumption and Constant Current Operation in Membrane Capacitive Deionization. Energy Environ. Sci. 2012, 5, 9520–9527.
  • Mossad, M.; Zhang, W.; Zou, L. Using Capacitive Deionisation for Inland Brackish Groundwater Desalination in a Remote Location. Desalination. 2013, 308, 154–160.
  • Kim, T.; Dykstra, J. E.; Porada, S.; van der Wal, A.; Yoon, J.; Biesheuvel, P. M. Enhanced Charge Efficiency and Reduced Energy Use in Capacitive Deionization by Increasing the Discharge Voltage. J. Colloid Interface Sci. 2015, 446, 317–326.
  • Wimalasiri, Y.; Zou, L. Carbon Nanotube/graphene Composite for Enhanced Capacitive Deionization Performance. Carbon. 2013, 59, 464–471.
  • Porada, S.; Weinstein, L.; Dash, R.; van der Wal, A.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P. M. Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes. ACS Appl. Mater. Interfaces. 2012, 4, 1194–1199.
  • El-Deen, A. G.; Choi, J.-H.; Khalil, K. A.; Almajid, A. A.; Barakat, N. A. M. A TiO2 Nanofiber/activated Carbon Composite as A Novel Effective Electrode Material for Capacitive Deionization of Brackish Water. RSC Adv. 2014, 4, 64634–64642.
  • Saleem, M. W.; Kim, W.-S. Parameter-based Performance Evaluation and Optimization of a Capacitive Deionization Desalination Process. Desalination. 2018, 437, 133–143.
  • Zhang, C.; He, D.; Ma, J.; Tang, W.; Waite, T. Faradaic Reactions in Capacitive Deionization (CDI) - Problems and Possibilities: A Review. Water Res. 2017, 128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.