162
Views
3
CrossRef citations to date
0
Altmetric
Adsorption

Development of foamy-like 3-dimensional graphene networks decorated with iron oxide nanoparticles for strontium adsorption

ORCID Icon
Pages 1184-1194 | Received 11 Mar 2020, Accepted 06 May 2020, Published online: 22 May 2020

References

  • IAEA. 2011. Disposal of Radioactive Waste. IAEA Safety Stand. Ser., SSR-5 454–458. org/STI/PUB/1449 ISBN 978–92–0–103010–8
  • Slovic, P.; FJ, H.; Layman, M. Perceived Risk, Trust, and the Politics of Nuclear Waste. Science. 1991, 618, 1603–1607. DOI: 10.1126/science.254.5038.1603.
  • Burns, P. C.; Ewing, R. C.; Navrotsky, A. Nuclear Fuel in a Reactor Accident. Science. 2012, 335(6073), 1184–1188. DOI: 10.1126/science.1211285.
  • Biedscheid, J.; Devarakonda, M. The Nuclear Energy Debate and the Importance of Radioactive Waste Management. Pract. Periodical Hazard. Toxic Radioactive Waste Manage. 2005, 9(1), 1–2. DOI: 10.1061/(ASCE)1090-025X(2005)9:1(1).
  • Srinivasan, T. N.; Gopi Rethinaraj, T. S. Fukushima and Thereafter: Reassessment of Risks of Nuclear Power. Energy Policy. 2013, 52, 726–736. DOI: 10.1016/j.enpol.2012.10.036.
  • JIM, D. G.; Steg, L.; Poortinga, W. Values, Perceived Risks and Benefits, and Acceptability of Nuclear Energy. Risk Anal. 2013, 33, 307–317. DOI: 10.1111/j.1539-6924.2012.01845.x.
  • Kumari, I.; Kumar, B. V. R.; Khanna, A. A Review on UREX Processes for Nuclear Spent Fuel Reprocessing. Nucl. Eng. Des. 2020, 358, 110410. DOI: 10.1016/j.nucengdes.2019.110410.
  • Rahman, R. O. A.; Ibrahium, H. A.; Y-T, H. Liquid Radioactive Wastes Treatment: A Review. Water. 2011, 3, 551–565. DOI: 10.3390/w3020551.
  • IAEA. Combined Methods for Liquid Radioactive Waste Treatment: Final Report of a Co-ordinated Research Project 1997-2001. IAEA-TECDOC. 2003, 1336, 1–250.
  • Borai, E. H.; Hilal, M. A.; MF, A.; Shehata, F. A. Improvement of Radioactive Liquid Waste Treatment Efficiency by Sequential Cationic and Anionic Ion Exchangers. Radiochim. Acta. 2008, 96, 441–447. DOI: 10.1524/ract.2008.1506.
  • Todd, T. A.; Batcheller, T. A.; JD, L.; RS, H. Literature Review Cesium and Strontium Separation Technologies. Chemical Processing, 2004, U.S. Department of Energy Office of Nuclear Energy.
  • Xu, C.; Wang, J.; Chen, J. Solvent Extraction of Strontium and Cesium: A Review of Recent Progress. Solvent Extr. Ion Exch. 2012, 30(6), 623–650. DOI: 10.1080/07366299.2012.700579.
  • Szabo, J.; Minamyer, S. Decontamination of Radiological Agents from Drinking Water Infrastructure: A Literature Review and Summary. Environ. Int. 2014, 72, 129–132. DOI: 10.1016/j.envint.2014.01.020.
  • Kohout, R.;. Application of Membrane Technologies for Liquid Radioactive Waste Processing. IAEA-Technical Report Series NO. 2004, 431, 156.
  • Hong, H. J.; Ryu, J.; Park, I. S.; Ryu, T.; Chung, K.-S.; Kim, B.-G.;, et al. Investigation of the Strontium (Sr(ii)) Adsorption of an Alginate Microsphere as a Low-cost Adsorbent for Removal and Recovery from Seawater. J. Environ. Manage. 2016, 165, 263–270. DOI: 10.1016/j.jenvman.2015.09.040.
  • Akkaya, R. Removal of Radioactive Elements from Aqueous Solutions by Adsorption onto Polyacrylamide-expanded Perlite: Equilibrium, Kinetic, and Thermodynamic Study. Desalination. 2013, 321, 3–8. DOI: 10.1016/j.desal.2012.09.020.
  • Kasap, S.; Nostar Aslan, E.; Öztürk, İ. Investigation of MnO 2 Nanoparticles-anchored 3D-graphene Foam Composites (3dgf-mno 2) as an Adsorbent for Strontium Using the Central Composite Design (CCD) Method. New J. Chem. 2019, 28, 15–19. DOI: 10.1039/c8nj05283b.
  • AAM, A.-K.; Zaki, A. A.; Elwan, W.; El-Naggar M. R.; Gouda, M. M. Experimental and Modeling Investigations of Cesium and Strontium Adsorption onto Clay of Radioactive Waste Disposal. Appl. Clay Sci. 2016, 132–133, 391–401. DOI: 10.1016/j.clay.2016.07.005.
  • Kasap, S.; Piskin, S.; Tel, H. Titanate Nanotubes: Preparation, Characterization and Application in Adsorption of Strontium Ion from Aqueous Solution. Radiochim. Acta. 2012, 100(12), 925–929. DOI: 10.1524/ract.2012.1981.
  • Venkatesan, K. A.; Selvam, G. P.; Rao, P. R. V. Sorption of Strontium on Hydrous Zirconium Oxide. Sep. Sci. Technol. 2000, 35(14), 2343–2357. DOI: 10.1081/SS-100102106.
  • Krasnopyorova, A.; Sofronov, D.; Odnovolova, A.M.; Effivoma, N. V.; Yuhno,G. D.; Kogo, O. S. Sorption Extraction of 137 Cs and 90 Sr Radionuclides from Aqueous Solutions by MnO(OH) Nanoparticles. Adsorpt. Sci. Technol. 2017, 35, 641–646. DOI: 10.1177/0263617417703884.
  • Liu, Y.; Liu, F.; Ni, L.;Meng, M.; Meng, X.; Zhong, G.; Qiu, J. A Modeling Study by Response Surface Methodology (RSM) on Sr(II) Ion Dynamic Adsorption Optimization Using A Novel Magnetic Ion Imprinted Polymer. RSC Adv. 2016, 6, 54679–54692. DOI: 10.1039/C6RA07270D.
  • Handley-Sidhu, S.; Mullan, T. K.; Grail, Q.; Albederneh M.; Ohnuki, T.; Macaskie, L. E. Influence of pH, Competing Ions, and Salinity on the Sorption of Strontium and Cobalt onto Biogenic Hydroxyapatite. Sci. Rep. 2016, 6, 4–11. DOI: 10.1038/srep23361.
  • Faghihian, H.; Moayed, M.; Firooz, A.; Iravani, M. Synthesis of a Novel Magnetic Zeolite Nanocomposite for Removal of Cs+ and Sr2+ from Aqueous Solution: Kinetic, Equilibrium, and Thermodynamic Studies. J. Colloid Interface Sci. 2013, 393, 445–451. DOI: 10.1016/j.jcis.2012.11.010.
  • Torab-Mostaedi, M.; Ghaemi, A.; Ghassabzadeh, H.; Ghannadi-Maragheh, M. Removal of Strontium and Barium from Aqueous Solutions by Adsorption onto Expanded Perlite. Can. J. Chem. Eng. 2011, 89, 1247–1254. DOI: 10.1002/cjce.20486.
  • Li, X.; Mu, W.; Xie, X.; Liu, B.; Tang, H.; Zhou, G.; Wei, H.; Jian, Y.; Luo, S.. Strontium Adsorption on Tantalum-doped Hexagonal Tungsten Oxide. J. Hazard. Mater. 2014, 264, 386–394. DOI: 10.1016/j.jhazmat.2013.11.032.
  • Li, X.; Xu, G.; Liu, Y.; He, T. Magnetic Fe 3 O 4 Nanoparticles : Synthesis and Application in Water Treatment. Nanoscience and Technology-Asia. 2011, 1(1), 14–24.
  • Husnain, S. M.; Um, W.; W-L, W.-L.; Chang, Y.-S. Magnetite-based Adsorbents for Sequestration of Radionuclides: A Review. RSC Adv. 2018, 8, 2521–2540. DOI: 10.1039/C7RA12299C.
  • Yang, S.; Chen, L.; Mu, L.; Ma, P. C. Magnetic Graphene Foam for Efficient Adsorption of Oil and Organic Solvents. J. Colloid Interface Sci. 2014, 430, 337–344. DOI: 10.1016/j.jcis.2014.05.062.
  • Zhu, M.; Diao, G. Review on the Progress in Synthesis and Application of Magnetic Carbon Nanocomposites. Nanoscale. 2011, 3(7), 2748–2767. DOI: 10.1039/c1nr10165j.
  • Lei, Y.; Chen, F.; Luo, Y.; Zhang, L. Synthesis of Three-dimensional Graphene Oxide Foam for the Removal of Heavy Metal Ions. Chem. Phys. Lett. 2014, 593, 122–127. DOI: 10.1016/j.cplett.2013.12.066.
  • Sadaghiani, A. K.; Motezakker, A. R.; Kasap, S.; Kaya, I. I.; Koşar, A. Foamlike 3D Graphene Coatings for Cooling Systems Involving Phase Change. ACS Omega.2018, 3(3), 2804–2811. DOI: 10.1021/acsomega.7b02040.
  • Lian, X.; Cai, M.; Qin, L.; Cao, Y.; Wu, Q.-H. Synthesis of Hierarchical Nanospheres Fe2O3/graphene Composite and Its Application in Lithium-ion Battery as a High-performance Anode Material. Ionics.2016, 22(11), 2015–2020. DOI: 10.1007/s11581-016-1749-3.
  • Jang, S.-C.; Haldorai, Y.; Lee, G.-W.; Hwang, S.-K.; Han, Y.-K.; Roh, C.; Huh, Y. S. Porous Three-dimensional Graphene foam/Prussian Blue Composite for Efficient Removal of Radioactive 137Cs. Sci. Rep.2015, 5(1), 17510. DOI: 10.1038/srep17510.
  • Song, W. L.; Li, X.; Fan, L. Z. Biomass Derivative/graphene Aerogels for Binder-free Supercapacitors. Energy Storage Mater. 2016, 3, 113–122. DOI: 10.1016/j.ensm.2016.01.010.
  • Zeng, M.; Wang, W.-L.; Bai, X.-D. Preparing Three-dimensional Graphene Architectures: Review of Recent Developments. Chin. Phys. B. 2013, 22(9), 098105. DOI: 10.1088/1674-1056/22/9/098105.
  • Chen, B.; Ma, Q.; Tan, C.; Lim, -T.-T.; Huang, L.; Zhang, H. Carbon-Based Sorbents with Three-Dimensional Architectures for Water Remediation. Small.2015, 11(27), 3319–3336. DOI: 10.1002/smll.201403729.
  • Kim, B. J.; Yang, G.; Park, M. J.; Seop Kwak, J.; Hyeon Baik, K.; Kim, D.; Kim, J. Three-dimensional Graphene Foam-based Transparent Conductive Electrodes in GaN-based Blue Light-emitting Diodes. Appl. Phys. Lett.2013, 102(16), 2011–2015. DOI: 10.1063/1.4801763.
  • Nardecchia, S.; Carriazo, D.; Ferrer, M. L.; Gutiérrez, M. C.; Del Monte, F. Three Dimensional Macroporous Architectures and Aerogels Built of Carbon Nanotubes And/or Graphene: Synthesis and Applications. Chem. Soc. Rev.2013, 42(2), 794–830. DOI: 10.1039/C2CS35353A.
  • Shen, Y.; Fang, Q.; Chen, B. Environmental Applications of Three-Dimensional Graphene-Based Macrostructures : Adsorption; Transformation, and Detection. Environ. Sci. Tech. 2015, 49, 1.
  • Ma, Y.; Chen, Y. Three-dimensional Graphene Networks : Synthesis, Properties and Applications., National Science Review, 2014, 2(1) ,40–53. DOI: 10.1093/nsr/nwu072.
  • Kasap, S.; Çakıroğlu, D.; Acar, M. B. Optimization of CVD Parameters on 3D Graphene Foam Structures with Response Surface Methodology (RSM) Optimization of CVD Parameters on 3D Graphene Foam Structures with Response Surface Methodology (RSM). Mater. Res. Exp. 2019, 6, 2053.
  • Khuri, A. I.; Mukhopadhyay, S. Response Surface Methodology. Wiley Interdisciplinary Rev. 2010, 2(2), 128–149. DOI: 10.1002/wics.73.
  • Vera Candioti, L.; De Zan, M. M.; Cámara, M. S.; Goicoechea, H. C. Experimental Design and Multiple Response Optimization. Using the Desirability Function in Analytical Methods Development. Talanta. 2014, 124, 123–138. DOI: 10.1016/j.talanta.2014.01.034.
  • Mason, R. L.; Gunst, R. F.; Hess, J. L. Statistical Design and Analysis of Experiments. John Wiley and Sons, Inc., 2003; 2nd Ed. DOI: 10.1002/0471458503
  • Worch, E.;. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling., Walter de Gruyter, 2012, Illustrated
  • Ali, I.; Gupta, V. K. Advances in Water Treatment by Adsorption Technology. Nat. Protoc. 2007, 1(6), 2661–2667. DOI: 10.1038/nprot.2006.370.
  • Thomas, W. J.; Crittenden, B. Adsorption Technology and Design, Reed Educational and Proffesional Publishing Ltd., 1998
  • Ferrari, A. C.;. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143(1–2), 47–57. DOI: 10.1016/j.ssc.2007.03.052.
  • Voorhess, P. W.;. Two-phase Mixtures. AnnuRevMaterSci. 1992, 22, 197–215.
  • Pang, S. C.; Chin, S. F.; Anderson, M. A. Redox Equilibria of Iron Oxides in Aqueous-based Magnetite Dispersions: Effect of pH and Redox Potential. J. Colloid Interface Sci. 2007, 311(1), 94–101. DOI: 10.1016/j.jcis.2007.02.058.
  • Halsey, G. D.;. The Role of Surface Heterogeneity in Adsorption. Adv. Catal. 1952, 4, 259–269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.