367
Views
11
CrossRef citations to date
0
Altmetric
Electrocoagulation

Optimization of an electrocoagulation unit for purification of ibuprofen from drinking water: Effect of conditions and linear/non-linear isotherm study

ORCID Icon, &
Pages 1431-1449 | Received 22 Mar 2020, Accepted 13 May 2020, Published online: 04 Jun 2020

References

  • Branchet, P.; Ariza Castro, N.; Fenet, H.; Gomez, E.; Courant, F.; Sebag, D.; Gardon, J.; Jourdan, C.; Ngounou Ngatcha, B.; Kengne, I.;, et al. Anthropic Impacts on Sub-Saharan Urban Water Resources through Their Pharmaceutical Contamination (Yaoundé, Center Region, Cameroon). Sci. Total Environ. 2019, 660, 886–898. DOI: 10.1016/j.scitotenv.2018.12.256.
  • Archundia, D.; Duwig, C.; Spadini, L.; Uzu, G.; Guédron, S.; Morel, M. C.; Cortez, R.; Ramos Ramos, O.; Chincheros, J.; Martins, J. M. F.;, et al. How Uncontrolled Urban Expansion Increases the Contamination of the Titicaca Lake Basin (El Alto, La Paz, Bolivia). Water, Air, Soil Pollut.2016, 228(1), 44. DOI: 10.1007/s11270-016-3217-0.
  • Schaider, L. A.; Ackerman, J. M.; Rudel, R. A. Septic Systems as Sources of Organic Wastewater Compounds in Domestic Drinking Water Wells in a Shallow Sand and Gravel Aquifer. Sci. Total Environ. 2016, 547, 470–481. DOI: 10.1016/j.scitotenv.2015.12.081.
  • Beheshti, F.; Tehrani, R. M.; Khadir, A. Sulfamethoxazole Removal by Photocatalytic Degradation Utilizing TiO2 and WO3 Nanoparticles as Catalysts: Analysis of Various Operational Parameters. Int. J. Environ. Sci. Technol. 2019, 16(12), 7987–7996. DOI: 10.1007/s13762-019-02212-x.
  • Desbiolles, F.; Malleret, L.; Tiliacos, C.; Wong-Wah-Chung, P.; Laffont-Schwob, I. Occurrence and Ecotoxicological Assessment of Pharmaceuticals: Is There a Risk for the Mediterranean Aquatic Environment? Sci. Total Environ. 2018, 639, 1334–1348. DOI: 10.1016/j.scitotenv.2018.04.351.
  • Madikizela, L. M.; Tavengwa, N. T.; Chimuka, L. Status of Pharmaceuticals in African Water Bodies: Occurrence, Removal and Analytical Methods. J. Environ. Manage. 2017, 193, 211–220. DOI: 10.1016/j.jenvman.2017.02.022.
  • Quesada, H. B.; Baptista, A. T. A.; Cusioli, L. F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-cost Adsorbents: A Review. Chemosphere. 2019, 222, 766–780. DOI: 10.1016/j.chemosphere.2019.02.009.
  • Oliveira, T. S.; Al Aukidy, M.; Verlicchi, P. Occurrence of Common Pollutants and Pharmaceuticals in Hospital Effluents BT - Hospital Wastewaters: Characteristics, Management, Treatment and Environmental Risks; Verlicchi, P., Ed.; Springer International Publishing: Cham, 2018; pp 17–32. doi: 10.1007/698_2017_9.
  • Richardson, M. L.; Bowron, J. M. The Fate of Pharmaceutical Chemicals in the Aquatic Environment. J. Pharm. Pharmacol. 1985, 37(1), 1–12. DOI: 10.1111/j.2042-7158.1985.tb04922.x.
  • Hignite, C.; Azarnoff, D. L. Drugs and Drug Metabolites as Environmental Contaminants: Chlorophenoxyisobutyrate and Salicylic Acid in Sewage Water Effluent. Life Sci. 1977, 20(2), 337–341. DOI: 10.1016/0024-3205(77)90329-0.
  • Yang, -Y.-Y.; Zhao, J.-L.; Liu, Y.-S.; Liu, W.-R.; Zhang, -Q.-Q.; Yao, L.; Hu, L.-X.; Zhang, J.-N.; Jiang, Y.-X.; Ying, -G.-G.;; et al. Pharmaceuticals and Personal Care Products (Ppcps) and Artificial Sweeteners (Ass) in Surface and Ground Waters and Their Application as Indication of Wastewater Contamination. Sci. Total Environ. 2018, 616, 816–823. DOI: 10.1016/j.scitotenv.2017.10.241.
  • Celle-Jeanton, H.; Schemberg, D.; Mohammed, N.; Huneau, F.; Bertrand, G.; Lavastre, V.; Le Coustumer, P. Evaluation of Pharmaceuticals in Surface Water: Reliability of PECs Compared to MECs. Environ. Int. 2014, 73, 10–21. DOI: 10.1016/j.envint.2014.06.015.
  • Burns, E. E.; Carter, L. J.; Kolpin, D. W.; Thomas-Oates, J.; Boxall, A. B. A. Temporal and Spatial Variation in Pharmaceutical Concentrations in an Urban River System. Water Res. 2018, 137, 72–85. DOI: 10.1016/j.watres.2018.02.066.
  • Mutiyar, P. K.; Gupta, S. K.; Mittal, A. K. Fate of Pharmaceutical Active Compounds (Phacs) from River Yamuna, India: An Ecotoxicological Risk Assessment Approach. Ecotoxicol. Environ. Saf. 2018, 150, 297–304. DOI: 10.1016/j.ecoenv.2017.12.041.
  • Hossain, A.; Nakamichi, S.; Habibullah-Al-Mamun, M.; Tani, K.; Masunaga, S.; Matsuda, H. Occurrence and Ecological Risk of Pharmaceuticals in River Surface Water of Bangladesh. Environ. Res. 2018, 165, 258–266. DOI: 10.1016/j.envres.2018.04.030.
  • Rivera-Jaimes, J. A.; Postigo, C.; Melgoza-Alemán, R. M.; Aceña, J.; Barceló, D.; de Alda, M. L. Study of Pharmaceuticals in Surface and Wastewater from Cuernavaca, Morelos, Mexico: Occurrence and Environmental Risk Assessment. Sci. Total Environ. 2018, 613, 1263–1274. DOI: 10.1016/j.scitotenv.2017.09.134.
  • Pereira, A. M. P. T.; Silva, L. J. G.; Laranjeiro, C. S. M.; Meisel, L. M.; Lino, C. M.; Pena, A. Human Pharmaceuticals in Portuguese Rivers: The Impact of Water Scarcity in the Environmental Risk. Sci. Total Environ. 2017, 609, 1182–1191. DOI: 10.1016/j.scitotenv.2017.07.200.
  • Bean, T. G.; Rattner, B. A.; Lazarus, R. S.; Day, D. D.; Burket, S. R.; Brooks, B. W.; Haddad, S. P.; Bowerman, W. W. Pharmaceuticals in Water, Fish and Osprey Nestlings in Delaware River and Bay. Environ. Pollut. 2018, 232, 533–545. DOI: 10.1016/j.envpol.2017.09.083.
  • Lindim, C.; Van Gils, J.; Georgieva, D.; Mekenyan, O.; Cousins, I. T. Evaluation of Human Pharmaceutical Emissions and Concentrations in Swedish River Basins. Sci. Total Environ. 2016, 572, 508–519. DOI: 10.1016/j.scitotenv.2016.08.074.
  • Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Pharmaceutical Residues in Water and Sediment of Msunduzi River, Kwazulu-natal, South Africa. Chemosphere. 2015, 134, 133–140. DOI: 10.1016/j.chemosphere.2015.03.093.
  • Praveena, S. M.; Shaifuddin, S. N. M.; Sukiman, S.; Nasir, F. A. M.; Hanafi, Z.; Kamarudin, N.; Ismail, T. H. T.; Aris, A. Z. Pharmaceuticals Residues in Selected Tropical Surface Water Bodies from Selangor (Malaysia): Occurrence and Potential Risk Assessments. Sci. Total Environ. 2018, 642, 230–240. DOI: 10.1016/j.scitotenv.2018.06.058.
  • Van Stempvoort, D. R.; Roy, J. W.; Grabuski, J.; Brown, S. J.; Bickerton, G.; Sverko, E. An Artificial Sweetener and Pharmaceutical Compounds as Co-tracers of Urban Wastewater in Groundwater. Sci. Total Environ. 2013, 461, 348–359. DOI: 10.1016/j.scitotenv.2013.05.001.
  • Ho, Y. B.; Zakaria, M. P.; Latif, P. A.; Saari, N. Simultaneous Determination of Veterinary Antibiotics and Hormone in Broiler Manure, Soil and Manure Compost by Liquid Chromatography–tandem Mass Spectrometry. J. Chromatogr. A. 2012, 1262, 160–168. DOI: 10.1016/j.chroma.2012.09.024.
  • Courtier, A.; Cadiere, A.; Roig, B. Human Pharmaceuticals: Why and How to Reduce Their Presence in the Environment. Curr. Opin. Green Sustain. Chem. 2019, 15, 77–82. DOI: 10.1016/j.cogsc.2018.11.001.
  • Na, G.; Fang, X.; Cai, Y.; Ge, L.; Zong, H.; Yuan, X.; Yao, Z.; Zhang, Z. Occurrence, Distribution, and Bioaccumulation of Antibiotics in Coastal Environment of Dalian, China. Mar. Pollut. Bull. 2013, 69(1–2), 233–237.
  • Li, M.; Liu, Y.; Zeng, G.; Liu, N.; Liu, S. Graphene and Graphene-based Nanocomposites Used for Antibiotics Removal in Water Treatment: A Review. Chemosphere. 2019, 226, 360–380. DOI: 10.1016/j.chemosphere.2019.03.117.
  • Peng, B.; Chen, L.; Que, C.; Yang, K.; Deng, F.; Deng, X.; Shi, G.; Xu, G.; Wu, M. Adsorption of Antibiotics on Graphene and Biochar in Aqueous Solutions Induced by π-π Interactions. Sci. Rep. 2016, 6(1), 31920.
  • Sangion, A.; Gramatica, P. Hazard of Pharmaceuticals for Aquatic Environment: Prioritization by Structural Approaches and Prediction of Ecotoxicity. Environ. Int. 2016, 95, 131–143. DOI: 10.1016/j.envint.2016.08.008.
  • Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal Occurrence, Removal, Mass Loading and Environmental Risk Assessment of 55 Pharmaceuticals and Personal Care Products in a Municipal Wastewater Treatment Plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. DOI: 10.1016/j.scitotenv.2015.11.047.
  • Liu, H.-Q.; Lam, J. C. W.; Li, -W.-W.; Yu, H.-Q.; Lam, P. K. S. Spatial Distribution and Removal Performance of Pharmaceuticals in Municipal Wastewater Treatment Plants in China. Sci. Total Environ. 2017, 586, 1162–1169. DOI: 10.1016/j.scitotenv.2017.02.107.
  • Li, S.-W.; Lin, A. Y.-C. Increased Acute Toxicity to Fish Caused by Pharmaceuticals in Hospital Effluents in a Pharmaceutical Mixture and after Solar Irradiation. Chemosphere. 2015, 139, 190–196. DOI: 10.1016/j.chemosphere.2015.06.010.
  • Orias, F.; Perrodin, Y. Characterisation of the Ecotoxicity of Hospital Effluents: A Review. Sci. Total Environ. 2013, 454, 250–276. DOI: 10.1016/j.scitotenv.2013.02.064.
  • Emmanuel, E.; Keck, G.; Blanchard, J.-M.; Vermande, P.; Perrodin, Y. Toxicological Effects of Disinfections Using Sodium Hypochlorite on Aquatic Organisms and Its Contribution to AOX Formation in Hospital Wastewater. Environ. Int. 2004, 30(7), 891–900. DOI: 10.1016/j.envint.2004.02.004.
  • Godoy, A. A.; Kummrow, F.; Pamplin, P. A. Z. Occurrence, Ecotoxicological Effects and Risk Assessment of Antihypertensive Pharmaceutical Residues in the Aquatic environment-A Review. Chemosphere. 2015, 138, 281–291. DOI: 10.1016/j.chemosphere.2015.06.024.
  • Bártíková, H.; Podlipná, R.; Skálová, L. Veterinary Drugs in the Environment and Their Toxicity to Plants. Chemosphere. 2016, 144, 2290–2301. DOI: 10.1016/j.chemosphere.2015.10.137.
  • Turk Sekulic, M.; Boskovic, N.; Slavkovic, A.; Garunovic, J.; Kolakovic, S.; Pap, S. Surface Functionalised Adsorbent for Emerging Pharmaceutical Removal: Adsorption Performance and Mechanisms. Process Saf. Environ. Prot. 2019, 125, 50–63. DOI: 10.1016/j.psep.2019.03.007.
  • Peng, J.; Wang, X.; Yin, F.; Xu, G. Characterizing the Removal Routes of Seven Pharmaceuticals in the Activated Sludge Process. Sci. Total Environ. 2019, 650, 2437–2445. DOI: 10.1016/j.scitotenv.2018.10.004.
  • de Souza, D. I.; Dottein, E. M.; Giacobbo, A.; Siqueira Rodrigues, M. A.; de Pinho, M. N.; Bernardes, A. M. Nanofiltration for the Removal of Norfloxacin from Pharmaceutical Effluent. J. Environ. Chem. Eng. 2018, 6(5), 6147–6153. DOI: 10.1016/j.jece.2018.09.034.
  • Fatehifar, M.; Borghei, S. M.; Ekhlasi Nia, A. Application of Moving Bed Biofilm Reactor in the Removal of Pharmaceutical Compounds (Diclofenac and Ibuprofen). J. Environ. Chem. Eng. 2018, 6(4), 5530–5535. DOI: 10.1016/j.jece.2018.08.029.
  • Tang, K.; Spiliotopoulou, A.; Chhetri, R. K.; Ooi, G. T. H.; Kaarsholm, K. M. S.; Sundmark, K.; Florian, B.; Kragelund, C.; Bester, K.; Andersen, H. R.;, et al. Removal of Pharmaceuticals, Toxicity and Natural Fluorescence through the Ozonation of Biologically-treated Hospital Wastewater, with Further Polishing via a Suspended Biofilm. Chem. Eng. J. 2019, 359, 321–330. DOI: 10.1016/j.cej.2018.11.112.
  • Azuma, T.; Otomo, K.; Kunitou, M.; Shimizu, M.; Hosomaru, K.; Mikata, S.; Mino, Y.; Hayashi, T. Removal of Pharmaceuticals in Water by Introduction of Ozonated Microbubbles. Sep. Purif. Technol. 2019, 212, 483–489. DOI: 10.1016/j.seppur.2018.11.059.
  • Chen, W.-H.; Wong, Y.-T.; Huang, T.-H.; Chen, W.-H.; Lin, J.-G. Removals of Pharmaceuticals in Municipal Wastewater Using a Staged Anaerobic Fluidized Membrane Bioreactor. Int. Biodeterior. Biodegrad. 2019, 140, 29–36. DOI: 10.1016/j.ibiod.2019.03.008.
  • Dhir, B. 14 - Removal of Pharmaceuticals and Personal Care Products by Aquatic Plants; Prasad,Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology (Elsevier Edition), 2019; pp 321–340. DOI: 10.1016/B978-0-12-816189-0.00014-7.
  • Vystavna, Y.; Frkova, Z.; Marchand, L.; Vergeles, Y.; Stolberg, F. Removal Efficiency of Pharmaceuticals in a Full Scale Constructed Wetland in East Ukraine. Ecol. Eng. 2017, 108, 50–58. DOI: 10.1016/j.ecoleng.2017.08.009.
  • Fu, J.; Lee, W.-N.; Coleman, C.; Nowack, K.; Carter, J.; Huang, C.-H. Removal of Pharmaceuticals and Personal Care Products by Two-stage Biofiltration for Drinking Water Treatment. Sci. Total Environ. 2019, 664, 240–248. DOI: 10.1016/j.scitotenv.2019.02.026.
  • Nariyan, E.; Aghababaei, A.; Sillanpää, M. Removal of Pharmaceutical from Water with an Electrocoagulation Process; Effect of Various Parameters and Studies of Isotherm and Kinetic. Sep. Purif. Technol. 2017, 188, 266–281. DOI: 10.1016/j.seppur.2017.07.031.
  • Kim, S.; Park, C. M.; Jang, A.; Jang, M.; Hernández-Maldonado, A. J.; Yu, M.; Heo, J.; Yoon, Y. Removal of Selected Pharmaceuticals in an Ultrafiltration-activated Biochar Hybrid System. J. Membr. Sci. 2019, 570–571, 77–84. DOI: 10.1016/j.memsci.2018.10.036.
  • Rosman, N.; Salleh, W. N. W.; Mohamed, M. A.; Jaafar, J.; Ismail, A. F.; Harun, Z. Hybrid Membrane Filtration-advanced Oxidation Processes for Removal of Pharmaceutical Residue. J. Colloid Interface Sci. 2018, 532, 236–260. DOI: 10.1016/j.jcis.2018.07.118.
  • Kanakaraju, D.; Glass, B. D.; Oelgemöller, M. Advanced Oxidation Process-mediated Removal of Pharmaceuticals from Water: A Review. J. Environ. Manage. 2018, 219, 189–207.
  • Mamelkina, M. A.; Tuunila, R.; Sillänpää, M.; Häkkinen, A. Systematic Study on Sulfate Removal from Mining Waters by Electrocoagulation. Sep. Purif. Technol. 2019, 216, 43–50. DOI: 10.1016/j.seppur.2019.01.056.
  • López-Guzmán, M.; Alarcón-Herrera, M. T.; Irigoyen-Campuzano, J. R.; Torres-Castañón, L. A.; Reynoso-Cuevas, L. Simultaneous Removal of Fluoride and Arsenic from Well Water by Electrocoagulation. Sci. Total Environ. 2019, 678, 181–187. DOI: 10.1016/j.scitotenv.2019.04.400.
  • Zhang, X.; Lu, M.; Idrus, M. A. M.; Crombie, C.; Jegatheesan, V. Performance of Precipitation and Electrocoagulation as Pretreatment of Silica Removal in Brackish Water and Seawater. Process Saf. Environ. Prot. 2019, 126, 18–24. DOI: 10.1016/j.psep.2019.03.024.
  • Hansen, H. K.; Peña, S. F.; Gutiérrez, C.; Lazo, A.; Lazo, P.; Ottosen, L. M. Selenium Removal from Petroleum Refinery Wastewater Using an Electrocoagulation Technique. J. Hazard. Mater. 2019, 364, 78–81. DOI: 10.1016/j.jhazmat.2018.09.090.
  • Nidheesh, P. V.; Singh, T. S. A. Arsenic Removal by Electrocoagulation Process: Recent Trends and Removal Mechanism. Chemosphere. 2017, 181, 418–432. DOI: 10.1016/j.chemosphere.2017.04.082.
  • AlJaberi, F. Y.;. Studies of Autocatalytic Electrocoagulation Reactor for Lead Removal from Simulated Wastewater. J. Environ. Chem. Eng. 2018, 6(5), 6069–6078. DOI: 10.1016/j.jece.2018.09.032.
  • Panikulam, P. J.; Yasri, N.; Roberts, E. P. L. Electrocoagulation Using an Oscillating Anode for Kaolin Removal. J. Environ. Chem. Eng. 2018, 6(2), 2785–2793. DOI: 10.1016/j.jece.2018.04.020.
  • Özyonar, F.; Muratçobanoğlu, H.; GÖKKUŞ, Ö. Taguchi Approach for Color Removal Using Electrocoagulation with Different Electrode Connection Types. Fresenius Environ. Bull. 2017, 26, 7600–7607.
  • Liu, Y.-J.; Lo, S.-L.; Liou, Y.-H.; Hu, C.-Y. Removal of Nonsteroidal Anti-inflammatory Drugs (Nsaids) by Electrocoagulation–flotation with a Cationic Surfactant. Sep. Purif. Technol. 2015, 152, 148–154. DOI: 10.1016/j.seppur.2015.08.015.
  • Hakizimana, J. N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. Electrocoagulation Process in Water Treatment: A Review of Electrocoagulation Modeling Approaches. Desalination. 2017, 404, 1–21. DOI: 10.1016/j.desal.2016.10.011.
  • Das, D.; Nandi, B. K. Removal of Fe (II) Ions from Drinking Water Using Electrocoagulation (EC) Process: Parametric Optimization and Kinetic Study. J. Environ. Chem. Eng. 2019, 7(3), 103116. DOI: 10.1016/j.jece.2019.103116.
  • Davarnejad, R.; Soofi, B.; Farghadani, F.; Behfar, R. Ibuprofen Removal from A Medicinal Effluent: A Review on the Various Techniques for Medicinal Effluents Treatment. Environ. Technol. Innovation. 2018, 11, 308–320. DOI: 10.1016/j.eti.2018.06.011.
  • Boxall, A. B. A.; Keller, V. D. J.; Straub, J. O.; Monteiro, S. C.; Fussell, R.; Williams, R. J. Exploiting Monitoring Data in Environmental Exposure Modelling and Risk Assessment of Pharmaceuticals. Environ. Int. 2014, 73, 176–185. DOI: 10.1016/j.envint.2014.07.018.
  • Nourmoradi, H.; Moghadam, K. F.; Jafari, A.; Kamarehie, B. Removal of Acetaminophen and Ibuprofen from Aqueous Solutions by Activated Carbon Derived from Quercus Brantii (Oak) Acorn as a Low-cost Biosorbent. J. Environ. Chem. Eng. 2018, 6(6), 6807–6815. DOI: 10.1016/j.jece.2018.10.047.
  • Chahm, T.; Rodrigues, C. A. Removal of Ibuprofen from Aqueous Solutions Using O-carboxymethyl-N-laurylchitosan/γ-Fe2O3. Environ. Nanotechnol. Monit. Manage. 2017, 7, 139–148. DOI: 10.1016/j.enmm.2017.03.001.
  • Abolhasani, S.; Ahmadpour, A.; Rohani Bastami, T.; Yaqubzadeh, A. Facile Synthesis of Mesoporous Carbon Aerogel for the Removal of Ibuprofen from Aqueous Solution by Central Composite Experimental Design (CCD). J. Mol. Liq. 2019, 281, 261–268. DOI: 10.1016/j.molliq.2019.02.084.
  • Zhang, L.; Lv, T.; Zhang, Y.; Stein, O. R.; Arias, C. A.; Brix, H.; Carvalho, P. N. Effects of Constructed Wetland Design on Ibuprofen Removal – A Mesocosm Scale Study. Sci. Total Environ. 2017, 609, 38–45. DOI: 10.1016/j.scitotenv.2017.07.130.
  • Gu, Y.; Yperman, J.; Carleer, R.; D’Haen, J.; Maggen, J.; Vanderheyden, S.; Vanreppelen, K.; Garcia, R. M. Adsorption and Photocatalytic Removal of Ibuprofen by Activated Carbon Impregnated with TiO2 by UV–Vis Monitoring. Chemosphere. 2019, 217, 724–731. DOI: 10.1016/j.chemosphere.2018.11.068.
  • Kobya, M.; Soltani, R. D. C.; Omwene, P. I.; Khataee, A. A Review on Decontamination of Arsenic-contained Water by Electrocoagulation: Reactor Configurations and Operating Cost along with Removal Mechanisms. Environ. Technol. Innovation. 2020, 17, 100519. DOI: 10.1016/j.eti.2019.100519.
  • Mirjavadi, E. S.; Tehrani, R. M. A.; Khadir, A. Effective Adsorption of Zinc on Magnetic Nanocomposite of Fe3O4/zeolite/cellulose Nanofibers: Kinetic, Equilibrium, and Thermodynamic Study. Environ. Sci. Pollut. Res. 2019, 26(32), 33478–33493. DOI: 10.1007/s11356-019-06165-z.
  • Khadir, A.; Negarestani, M.; Mollahosseini, A. Sequestration of a Non-steroidal Anti-inflammatory Drug from Aquatic Media by Lignocellulosic Material (Luffa Cylindrica) Reinforced with Polypyrrole: Study of Parameters, Kinetics, and Equilibrium. J. Environ. Chem. Eng. 2020, 8(3), 103734. DOI: 10.1016/j.jece.2020.103734.
  • Ghenaatgar, A.; Tehrani, R. M.; Khadir, A. Photocatalytic Degradation and Mineralization of Dexamethasone Using WO3 and ZrO2 Nanoparticles: Optimization of Operational Parameters and Kinetic Studies. J. Water Process Eng. 2019, 32, 100969. DOI: 10.1016/j.jwpe.2019.100969.
  • Pahlavanzadeh, H.; Motamedi, M. Adsorption of Nickel, Ni(II), in Aqueous Solution by Modified Zeolite as a Cation-Exchange Adsorbent. J. Chem. Eng. Data. 2020, 65(1), 185–197. DOI: 10.1021/acs.jced.9b00868.
  • Özyonar, F.;. Removal of Salicylic Acid from Aqueous Solutions Using Various Electrodes and Different Connection Modes by Electrocoagulation. Int. J. Electrochem. Sci. 2016, 11, 3680–3696. DOI: 10.20964/110454.
  • Ghosh, D.; Solanki, H.; Purkait, M. K. Removal of Fe(II) from Tap Water by Electrocoagulation Technique. J. Hazard. Mater. 2008, 155(1), 135–143. DOI: 10.1016/j.jhazmat.2007.11.042.
  • Kobya, M.; Demirbas, E.; Can, O. T.; Bayramoglu, M. Treatment of Levafix Orange Textile Dye Solution by Electrocoagulation. J. Hazard. Mater. 2006, 132(2–3), 183–188. DOI: 10.1016/j.jhazmat.2005.07.084.
  • Chen, X.; Chen, G.; Yue, P. L. Separation of Pollutants from Restaurant Wastewater by Electrocoagulation. Sep. Purif. Technol. 2000, 19(1–2), 65–76. DOI: 10.1016/S1383-5866(99)00072-6.
  • Vepsäläinen, M.; Sillanpää, M. Chapter 1 - Electrocoagulation in the Treatment of Industrial Waters and Wastewaters; M.B.T.-A.W.T. Sillanpää, Advanced Water Treatment(Elsevier Edition), 2020; pp 1–78. DOI: 10.1016/B978-0-12-819227-6.00001-2.
  • Ozyonar, F.; Karagozoglu, B. Treatment of Pretreated Coke Wastewater by Electrocoagulation and Electrochemical Peroxidation Processes. Sep. Purif. Technol. 2015, 150, 268–277. DOI: 10.1016/j.seppur.2015.07.011.
  • Emamjomeh, M. M.; Sivakumar, M. Review of Pollutants Removed by Electrocoagulation and Electrocoagulation/flotation Processes. J. Environ. Manage. 2009, 90(5), 1663–1679. DOI: 10.1016/j.jenvman.2008.12.011.
  • An, C.; Huang, G.; Yao, Y.; Zhao, S. Emerging Usage of Electrocoagulation Technology for Oil Removal from Wastewater: A Review. Sci. Total Environ. 2017, 579, 537–556. DOI: 10.1016/j.scitotenv.2016.11.062.
  • Khandegar, V.; Saroha, A. K. Electrocoagulation for the Treatment of Textile Industry Effluent – A Review. J. Environ. Manage. 2013, 128, 949–963. DOI: 10.1016/j.jenvman.2013.06.043.
  • Samir, A.; Chelliapan, S.; Zakaria, Z.; Ajeel, M.; Alaba, P. A Review of Electrocoagulation Technology for the Treatment of Textile Wastewater. Rev.Chem. Eng. 2016. DOI: 10.1515/revce-2016-0019.
  • Özyonar, F.;. Treatment of Train Industry Oily Wastewater by Electrocoagulation with Hybrid Electrode Pairs and Different Electrode Connection Modes. Int. J. Electrochem. Sci. 2016, 11, 1456–1471.
  • Moussa, D. T.; El-Naas, M. H.; Nasser, M.; Al-Marri, M. J. A Comprehensive Review of Electrocoagulation for Water Treatment: Potentials and Challenges; J. Environ. Manage, 2017; pp 24–41. doi: 10.1016/j.jenvman.2016.10.032.
  • Garcia-Segura, S.; Eiband, M. M. S. G.; de Melo, J. V.; Martínez-Huitle, C. A. Electrocoagulation and Advanced Electrocoagulation Processes: A General Review about the Fundamentals, Emerging Applications and Its Association with Other Technologies. J. Electroanal. Chem. 2017, 801, 267–299. DOI: 10.1016/j.jelechem.2017.07.047.
  • Akbal, F.; Kuleyin, A. Decolorization of Levafix Brilliant Blue E-B by Electrocoagulation Method. Environ. Prog. Sustainable Energy. 2011, 30(1), 29–36. DOI: 10.1002/ep.10437.
  • Mohammadi, A.; Khadir, A.; Tehrani, R. M. A. Optimization of Nitrogen Removal from an Anaerobic Digester Effluent by Electrocoagulation Process. J. Environ. Chem. Eng. 2019, 7(3), 103195. DOI: 10.1016/j.jece.2019.103195.
  • Sridhar, R.; Sivakumar, V.; Prince Immanuel, V.; Prakash Maran, J. Treatment of Pulp and Paper Industry Bleaching Effluent by Electrocoagulant Process. J. Hazard. Mater. 2011, 186(2), 1495–1502. DOI: 10.1016/j.jhazmat.2010.12.028.
  • Lindqvist, N.; Tuhkanen, T.; Kronberg, L. Occurrence of Acidic Pharmaceuticals in Raw and Treated Sewages and in Receiving Waters. Water Res. 2005, 39(11), 2219–2228. DOI: 10.1016/j.watres.2005.04.003.
  • Zaied, M.; Bellakhal, N. Electrocoagulation Treatment of Black Liquor from Paper Industry. J. Hazard. Mater. 2009, 163(2), 995–1000. DOI: 10.1016/j.jhazmat.2008.07.115.
  • Kılıç, M. G.; Hoşten, Ç. A Comparative Study of Electrocoagulation and Coagulation of Aqueous Suspensions of Kaolinite Powders. J. Hazard. Mater. 2010, 176(1), 735–740. DOI: 10.1016/j.jhazmat.2009.11.097.
  • Sharma, P.; Joshi, H.; Srivastava, V. Two-stage Electrochemical Treatment of Bio-digested Distillery Spent Wash Using Stainless Steel and Aluminum Electrodes. J. Environ. Sci. Health. A. 2015. DOI: 10.1080/10934529.2015.994968.
  • FENG, J.; SUN, Y.; ZHENG, Z.; ZHANG, J.; LI, S.; TIAN, Y. Treatment of Tannery Wastewater by Electrocoagulation. J. Environ. Sci. 2007, 19(12), 1409–1415. DOI: 10.1016/S1001-0742(07)60230-7.
  • de la Luz-asunción, M.; Pérez-Ramírez, E. E.; Martínez-Hernández, A. L.; Castano, V. M.; Sánchez-Mendieta, V.; Velasco-Santos, C. Non-linear Modeling of Kinetic and Equilibrium Data for the Adsorption of Hexavalent Chromium by Carbon Nanomaterials: Dimension and Functionalization. Chin. J. Chem. Eng. 2019, 27(4), 912–919. DOI: 10.1016/j.cjche.2018.08.024.
  • Nimibofa, A.; Ebelegi, A.; Donbebe, W. Modelling and Interpretation of Adsorption Isotherms. Hindawi J. Chem. 2017, 201, 11 pages. DOI: 10.1155/2017/3039817.
  • Mollahosseini, A.; Khadir, A.; Saeidian, J. Core–shell polypyrrole/Fe3O4 Nanocomposite as Sorbent for Magnetic Dispersive Solid-phase Extraction of Al+3 Ions from Solutions: Investigation of the Operational Parameters. J. Water Process Eng. 2019, 29, 100795. DOI: 10.1016/j.jwpe.2019.100795.
  • Liu, J.; Wang, X. Novel Silica-Based Hybrid Adsorbents: Lead(II) Adsorption Isotherms. Sci. World J. 2013, 2013, 1–6. DOI: 10.1155/2013/897159.
  • Zaheer, Z.; AbuBaker Bawazir, W.; Al-Bukhari, S. M.; Basaleh, A. S. Adsorption, Equilibrium Isotherm, and Thermodynamic Studies to the Removal of Acid Orange 7. Mater. Chem. Phys. 2019, 232, 109–120. DOI: 10.1016/j.matchemphys.2019.04.064.
  • Belhachemi, M.; Addoun, F. Comparative Adsorption Isotherms and Modeling of Methylene Blue onto Activated Carbons. Appl. Water Sci. 2011, 1(3), 111–117. DOI: 10.1007/s13201-011-0014-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.