527
Views
13
CrossRef citations to date
0
Altmetric
Flotation

Investigation on interaction behavior between coarse and fine particles in the coal flotation using focused beam reflectance measurement (FBRM) and particle video microscope (PVM)

, , ORCID Icon, , &
Pages 1418-1430 | Received 28 Mar 2020, Accepted 29 May 2020, Published online: 10 Jun 2020

References

  • Tao, D. Role of Bubble Size in Flotation of Coarse and Fine Particles—A Review. Sep. Sci. Technol. 2005, 39(4), 741–760. DOI: 10.1081/SS-120028444.
  • Ni, C.; Bu, X.; Xia, W.; Peng, Y.; Xie, G. Effect of Slimes on the Flotation Recovery and Kinetics of Coal Particles. Fuel. 2018, 220, 159–166. DOI: 10.1016/j.fuel.2018.02.003.
  • Bu, X.; Xie, G.; Peng, Y. Interaction of Fine, Medium, and Coarse Particles in Coal Fines Flotation. Energy Sources Part A. 2017, 39(12), 1276–1282. DOI: 10.1080/15567036.2017.1323054.
  • Sobhy, A.; Tao, D. Nanobubble Column Flotation of Fine Coal Particles and Associated Fundamentals. Int. J. Miner. Process. 2013, 124, 109–116. DOI: 10.1016/j.minpro.2013.04.016.
  • Trahar, W.; Warren, L. The Flotability of Very Fine Particles—a Review. Int. J. Miner. Process. 1976, 3(2), 103–131. DOI: 10.1016/0301-7516(76)90029-6.
  • Tao, Y.; Liu, J.; Yu, S.; Tao, D. Picobubble Enhanced Fine Coal Flotation. Sep. Sci. Technol. 2007, 41(16), 3597–3607. DOI: 10.1080/01496390600957249.
  • Rahman, A.; Ahmad, K.; Mahmoud, A.; Fan, M. Nano-microbubble Flotation of Fine and Ultrafine Chalcopyrite Particles. Int. J. Mineral Sci. Technol. 2014, 24, 559–566. DOI: 10.1016/j.ijmst.2014.05.021.
  • Chen, Y.; Xie, G.; Chang, J.; Grundy, J.; Liu, Q. A Study of Coal Aggregation by Standing-wave Ultrasound. Fuel. 2019, 248, 38–46. DOI: 10.1016/j.fuel.2019.03.030.
  • Yoon, R. H.; Luttrell, G. H. The Effect of Bubble Size on Fine Particle Flotation. Mineral Process. Extr. Metall. Rev. 1989, 5(1–4), 101–122. DOI: 10.1080/08827508908952646.
  • Miettinen, T.; Ralston, J.; Fornasiero, D. The Limits of Fine Particle Flotation. Miner. Eng. 2010, 23(5), 420–437. DOI: 10.1016/j.mineng.2009.12.006.
  • Xu, Z.; Liu, J.; Choung, J. W.; Zhou, Z. Electrokinetic Study of Clay Interactions with Coal in Flotation. Int. J. Miner. Process. 2003, 68(1), 183–196.
  • Feng, D.; Aldrich, C. Effect of Particle Size on Flotation Performance of Complex Sulphide Ores. Miner. Eng. 1999, 12(7), 721–731. DOI: 10.1016/S0892-6875(99)00059-X.
  • Zhou, Z. A.; Xu, Z.; Finch, J. A.; Hu, H.; Rao, S. R. Role of Hydrodynamic Cavitation in Fine Particle Flotation. Int. J. Miner. Process. 1997, 51(97), 139–149. DOI: 10.1016/S0301-7516(97)00026-4.
  • Zhou, Z. A.; Xu, Z.; Finch, J. A.; Masliyah, J. H.; Chow, R. S. On the Role of Cavitation in Particle Collection in Flotation – A Critical Review. II. Miner. Eng. 2009, 22(5), 419–433. DOI: 10.1016/j.mineng.2008.12.010.
  • Sobhy, A.; Tao, D. High-Efficiency Nanobubble Coal Flotation. Int. J. Coal Prep. Util. 2013, 33(5), 242–256. DOI: 10.1080/19392699.2013.810623.
  • Rulyov, N. N. Turbulent Microflotation: Theory and Experiment. Colloid. Surface A. 2001, 192(1), 73–91. DOI: 10.1016/S0927-7757(01)00718-X.
  • Rulyov, N. N. Turbulent Microflotation of Ultrafine Minerals. Mineral Process. Extr. Metall. 2013, 117(1), 32–37. DOI: 10.1179/174328507X198744.
  • Forbes, E. Shear, Selective and Temperature Responsive Flocculation: A Comparison of Fine Particle Flotation Techniques. Int. J. Miner. Process. 2011, 99(1), 1–10. DOI: 10.1016/j.minpro.2011.02.001.
  • Song, S.; Valdivieso, A. L. Hydrophobic Flocculation Flotation for Beneficiating Fine Coal and Minerals. Sep. Sci. Technol. 1998, 33(8), 1195–1212. DOI: 10.1080/01496399808545249.
  • Subrahmanyam, T. V.; Forssberg, K. S. E. Fine Particles Processing: Shear-flocculation and Carrier Flotation — A Review. Int. J. Miner. Process. 1990, 30(3), 265–286. DOI: 10.1016/0301-7516(90)90019-U.
  • Warren, L. J. Shear-flocculation of Ultrafine Scheelite in Sodium Oleate Solutions. J. Colloid Interface Sci. 1975, 50(2), 307–318. DOI: 10.1016/0021-9797(75)90234-9.
  • Gence, N. Coal Recovery from Bituminous Coal by Aggloflotation with Petroleum Oils. Fuel. 2006, 85(7), 1138–1142. DOI: 10.1016/j.fuel.2005.11.001.
  • Jiangang, F.; Kaida, C.; Hui, W.; Chao, G.; Wei, L. Recovering Molybdenite from Ultrafine Waste Tailings by Oil Agglomerate Flotation. Miner. Eng. 2012, 39(6), 133–139. DOI: 10.1016/j.mineng.2012.07.006.
  • Yu, Q.; Ye, Y.; Miller, J. A Study of Surfactant/oil Emulsions for Fine Coal Flotation; Springer: Boston, 1990.
  • Gupta, N.; Li, B.; Luttrell, G.; Yoon, R.-H.; Bratton, R.; Reyher, J. (2016) Hydrophobic-hydrophilic Separation (Hhs) Process for the Recovery and Dewatering of Ultrafine Coal. SME Annual Meeting., Phoenix, Arizona, 2–3.
  • Yoon, R.-H.; Gupta, N.; Li, B.; Luttrell, G.; Bratton, R.; Reyher, J.; Suboleski, S. (2016) Hydrophobic-hydrophilic Separation (HHS) Process for Simultaneous Recovery and Dewatering of Fine Particles. XXVIII International Mineral Processing Congress Proceedings, Quebec City, Canada, Canadian Institute of Mining, Metallurgy and Petroleum Quebec.
  • Greene, E. W.; Duke, J. B. Selective Froth Flotation of Ultrafine Minerals or Slimes. Trans. AIME. 1962, 223, 389–395.
  • Koca, S.; Koca, H. Carrier Flotation of Alunite from Kaolin Clay; Elsevier: Amsterdam, Netherlands, 2000.
  • Valderrama, L.; Rubio, J. High Intensity Conditioning and the Carrier Flotation of Gold Fine Particles. Int. J. Miner. Process. 1998, 52(4), 273–285. DOI: 10.1016/S0301-7516(97)00068-9.
  • Ateşok, G.; Boylu, F.; Çelĭk, M. S. Carrier Flotation for Desulfurization and Deashing of Difficult-to-float Coals. Miner. Eng. 2001, 14(6), 661–670. DOI: 10.1016/S0892-6875(01)00058-9.
  • Fuerstenau, D. W.; Li, C.; Hanson, J. S. Shear Flocculation and Carrier Flotation of Fine Hematite; Elsevier: Pergamon, 1988.
  • Zhang, X.; Hu, Y.; Sun, W.; Xu, L. The Effect of Polystyrene on the Carrier Flotation of Fine Smithsonite. Minerals. 2017, 7(4), 52. DOI: 10.3390/min7040052.
  • Senaputra, A.; Jones, F.; Fawell, P. D.; Smith, P. G. Focused Beam Reflectance Measurement for Monitoring the Extent and Efficiency of Flocculation in Mineral Systems. AIChE J. 2014, 60(1), 251–265. DOI: 10.1002/aic.14256.
  • Yu, Y.; Cheng, G.; Ma, L.; Huang, G.; Wu, L.; Xu, H. Effect of Agitation on the Interaction of Coal and Kaolinite in Flotation. Powder Technol. 2017, 313, 122–128. DOI: 10.1016/j.powtec.2017.03.002.
  • Greaves, D.; Boxall, J.; Mulligan, J.; Montesi, A.; Creek, J.; Dendy Sloan, E.; Koh, C. A. Measuring the Particle Size of a Known Distribution Using the Focused Beam Reflectance Measurement Technique. Chem. Eng. Sci. 2008, 63(22), 5410–5419. DOI: 10.1016/j.ces.2008.07.023.
  • Zidan, A. S.; Rahman, Z.; Khan, M. A. Online Monitoring of PLGA Microparticles Formation Using Lasentec Focused Beam Reflectance (FBRM) and Particle Video Microscope (PVM). Aaps J. 2010, 12(3), 254–262. DOI: 10.1208/s12248-010-9184-2.
  • Ni, C.; Bu, X.; Xia, W.; Peng, Y.; Yu, H.; Xie, G. Observing Slime-coating of Fine Minerals on the Lump Coal Surface Using Particle Vision and Measurement. Powder Technol. 2018, 339, 434–439. DOI: 10.1016/j.powtec.2018.08.034.
  • Barrett, P.; Glennon, B. Characterizing the Metastable Zone Width and Solubility Curve Using Lasentec FBRM and PVM. Chemical Engineering Research and Design. 2002, 80(7), 799–805. DOI: 10.1205/026387602320776876.
  • Xalter, R.; Mülhaupt, R. Online Monitoring of Polyolefin Particle Growth in Catalytic Olefin Slurry Polymerization by Means of Lasentec Focused Beam Reflectance Measurement (FBRM) and Video Microscopy (PVM) Probes. Macromol. React. Eng. 2010, 4(1), 25–39. DOI: 10.1002/mren.200900048.
  • Li, D.; Yin, W.; Liu, Q.; Cao, S.; Sun, Q.; Zhao, C.; Yao, J. Interactions between Fine and Coarse Hematite Particles in Aqueous Suspension and Their Implications for Flotation. Miner. Eng. 2017, 114, 74–81. DOI: 10.1016/j.mineng.2017.09.012.
  • Niu, C.; Xia, W.; Peng, Y. Analysis of Coal Wettability by Inverse Gas Chromatography and Its Guidance for Coal Flotation. Fuel. 2018, 228, 290–296. DOI: 10.1016/j.fuel.2018.04.146.
  • Jin, Y.; Lu, H.-F.; Guo, X.-L.; Gong, X. The Effect of Water Addition on the Surface Energy, Bulk and Flow Properties of Lignite. Fuel Process. Technol. 2018, 176, 91–100. DOI: 10.1016/j.fuproc.2018.02.024.
  • Nguyen, T. C.; Anne-Archard, D.; Cameleyre, X.; Lombard, E.; To, K. A.; Fillaudeau, L. Bio-catalytic Hydrolysis of Paper Pulp Using In- and Ex-situ Multi-physical Approaches: Focus on Semidilute Conditions to Progress Towards Concentrated Suspensions. Biomass Bioenergy. 2019, 122, 28–36. DOI: 10.1016/j.biombioe.2019.01.006.
  • Jia, R.; Harris, G. H.; Fuerstenau, D. W. Chemical Reagents for Enhanced Coal Flotation. Coal Prep. 2002, 22(3), 123–149. DOI: 10.1080/07349340213847.
  • Bu, X.; Zhang, T.; Chen, Y.; Peng, Y.; Xie, G.; Wu, E. Comparison of Mechanical Flotation Cell and Cyclonic Microbubble Flotation Column in Terms of Separation Performance for Fine Graphite. Physicochem Prob Mineral Process. 2018, 54(3), 732–740.
  • Drzymala, J.; Kapusniak, J.; Tomasik, P. Removal of Lead Minerals from Copper Industrial Flotation Concentrates by Xanthate Flotation in the Presence of Dextrin. Int. J. Miner. Process. 2003, 70(1–4), 147–155. DOI: 10.1016/S0301-7516(02)00156-4.
  • Drzymala, J. Evaluation and Comparison of Separation Performance for Varying Feed Composition and Scattered Separation Results. Int. J. Miner. Process. 2005, 75(3–4), 189–196. DOI: 10.1016/j.minpro.2004.07.033.
  • Drzymala, J.; Ahmed, H. A. M. Mathematical Equations for Approximation of Separation Results Using the Fuerstenau Upgrading Curves. Int. J. Miner. Process. 2005, 76(1–2), 55–65. DOI: 10.1016/j.minpro.2004.10.002.
  • Trahar, W. J. Rational Interpretation of the Role of Particle Size in Flotation. Int. J. Miner. Process. 1981, 8(4), 289–327. DOI: 10.1016/0301-7516(81)90019-3.
  • Smith, P. G.; Warren, L. J. Entrainment of Particles into Flotation Froths. Mineral Process. Extr. Metall. Rev. 1989, 5(1–4), 123–145. DOI: 10.1080/08827508908952647.
  • Wang, L.; Peng, Y.; Runge, K.; Bradshaw, D. A Review of Entrainment: Mechanisms, Contributing Factors and Modelling in Flotation. Miner. Eng. 2015, 70, 77–91. DOI: 10.1016/j.mineng.2014.09.003.
  • Neethling, S. J.; Cilliers, J. J. The Entrainment of Gangue into a Flotation Froth. Int. J. Miner. Process. 2002, 64(2), 123–134. DOI: 10.1016/S0301-7516(01)00067-9.
  • Yianatos, J.; Contreras, F. Particle Entrainment Model for Industrial Flotation Cells. Powder Technol. 2010, 197(3), 260–267. DOI: 10.1016/j.powtec.2009.10.001.
  • Kirjavainen, V. M. Review and Analysis of Factors Controlling the Mechanical Flotation of Gangue Minerals. Int. J. Miner. Process. 1996, 46(1–2), 21–34. DOI: 10.1016/0301-7516(95)00057-7.
  • Yoon, R. H.; Mao, L. Application of Extended DLVO Theory, IV: Derivation of Flotation Rate Equation from First Principles. J. Colloid Interface Sci. 1996, 181(2), 613–626. DOI: 10.1006/jcis.1996.0419.
  • Hu, Y.; Dai, J. Hydrophobic Aggregation of Alumina in Surfactant Solution. Miner. Eng. 2003, 16(11), 1167–1172. DOI: 10.1016/j.mineng.2003.07.018.
  • Yao, J.; Xue, J.; Li, D.; Fu, Y.; Gong, E.; Yin, W. Effects of Fine–coarse Particles Interaction on Flotation Separation and Interaction Energy Calculation. Part. Sci. Technol. 2016, 36(1), 11–19. DOI: 10.1080/02726351.2016.1205687.
  • Yin, W.; Xue, J.; Li, D.; Sun, Q.; Yao, J.; Huang, S. Flotation of Heavily Oxidized Pyrite in the Presence of Fine Digenite Particles. Miner. Eng. 2018, 115, 142–149. DOI: 10.1016/j.mineng.2017.10.016.
  • Nguyen, A. V. Schulze, H. J. Colloidal Science of Flotation. In Surfactant Science Series; Hubbard, A. T., Ed.; CRC Press: NewYork, 2003, p. 324.
  • Yao, J.; Yin, W.; Gong, E. Depressing Effect of Fine Hydrophilic Particles on Magnesite Reverse Flotation. Int. J. Miner. Process. 2016, 149, 84–93. DOI: 10.1016/j.minpro.2016.02.013.
  • Lu, J.; Yuan, Z.; Liu, J.; Li, L.; Zhu, S. Effects of Magnetite on Magnetic Coating Behavior in Pentlandite and Serpentine System. Miner. Eng. 2015, 72, 115–120. DOI: 10.1016/j.mineng.2014.12.038.
  • Hu, P.; Liang, L.; Li, B.; Xia, W. Heterocoagulation between Coal and Quartz Particles Studied by the Mineral Heterocoagulation Quantifying System. Miner. Eng. 2019, 138, 7–13. DOI: 10.1016/j.mineng.2019.04.029.
  • Oss, C. J. V.; Giese, R. F.; Costanzo, P. M. DLVO and non-DLVO Interactions in Hectorite. Clays Clay Miner. 1990, 38(2), 151–159. DOI: 10.1346/CCMN.1990.0380206.
  • Fowkes, F. M. Attractive Forces at Interfaces. Ind. Eng. Chem. 1964, 56(12), 40–52. DOI: 10.1021/ie50660a008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.