100
Views
1
CrossRef citations to date
0
Altmetric
Detoxification

Metal-free and stable dye-sensitized polymer matrix for the detoxification of antibiotic drug levofloxacin under visible light illumination

, , &
Pages 1466-1474 | Received 27 Dec 2019, Accepted 15 Jun 2020, Published online: 29 Jun 2020

References

  • Ray, S. K.; Dhakal, D.; Lee, S. W. Rapid Degradation of Naproxen by AgBr-α-NiMoO4 Composite Photocatalyst in Visible Light: Mechanism and Pathways. Chem. Eng. J. 2018, 347, 836–848.
  • Kumar, J. V.; Karthik, R.; Chen, S. M.; Muthuraj, V.; Karuppiah, C. Fabrication of Potato-like Silver Molybdate Microstructures for Photocatalytic Degradation of Chronic Toxicity Ciprofloxacin and Highly Selective Electrochemical Detection of H2O2. Sci. Rep. 2016, 6, 34149–34161. DOI: 10.1038/srep34149.
  • Jallouli, N.; Elghniji, K.; Trabelsi, H.; Ksibi, M. Photocatalytic Degradation of Paracetamol on TiO2 Nanoparticles and TiO2/cellulosic Fiber under UV and Sunlight Irradiation. Arab. J. Chem. 2017, 10, S3640–S3645. DOI: 10.1016/j.arabjc.2014.03.014.
  • Kansal, S. K.; Kundu, P.; Sood, S.; Lamba, R.; Umar, A.; Mehta, S. K. Photocatalytic Degradation of the Antibiotic Levofloxacin Using Highly Crystalline TiO2 Nanoparticles. New. J. Chem. 2014, 38(7), 3220–3226. DOI: 10.1039/C3NJ01619F.
  • Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K. L. Occurrence of Antibiotics in the Aquatic Environment. Sci. Total. Environ. 1999, 225, 109–118. DOI: 10.1016/S0048-9697(98)00337-4.
  • Skúlason, S.; Ingolfsson, E.; Kristmundsdóttir, T. Development of a Simple HPLC Method for Separation of Doxycycline and Its Degradation Products. J. Pharmaceut. Biomed. 2003, 33(4), 667–672. DOI: 10.1016/S0731-7085(03)00316-9.
  • Gul, W.; Hamid, F.; Ayub, S.; Bhatti, S. Degradation Studies of Selected Fluoroquinolones. EJPMR. 2015, 2(7), 06–10.
  • Cunha, B. A.;. Antibiotic Side Effects. Med. Clin. N. Am. 2001, 85(1), 149–185. DOI: 10.1016/S0025-7125(05)70309-6.
  • Vasquez, M. I.; Lambrianides, A.; Schneider, M.; Kümmerer, K.; Fatta-Kassinos, D. Environmental Side Effects of Pharmaceutical Cocktails: What We Know and What We Should Know. J. Hazard. Mater. 2014, 279, 169–189. DOI: 10.1016/j.jhazmat.2014.06.069.
  • Van, X. D.; Dewulf, J.; Van, H. L.; Demeestere, K. Fluoroquinolone Antibiotics: An Emerging Class of Environmental Micropollutants. Sci. Total. Environ. 2014, 500, 250–269. DOI: 10.1016/j.scitotenv.2014.08.075.
  • Kümmerer, K.;. Antibiotics in the Aquatic Environment–a Review–part I. Chemosphere 2009, 75(4), 417–434. DOI: 10.1016/j.chemosphere.2008.11.086.
  • Al-Harbi, L. M.; El-Mossalamy, E. H.; Obaid, A. Y.; El-Ries, M. A. Thermal Decomposition of Some Cardiovascular Drugs (Telmisartane, Cilazapril and Terazosin HCL). Am. J. Analyt. Chem. 2013, 4(7), 337–342. DOI: 10.4236/ajac.2013.47042.
  • Epold, I.; Trapido, M.; Dulova, N. Degradation of Levofloxacin in Aqueous Solutions by Fenton, Ferrous Ion-activated Persulfate and Combined Fenton/persulfate Systems. Chem. Eng. J. 2015, 279, 452–462. DOI: 10.1016/j.cej.2015.05.054.
  • Bagheri, S.; TermehYousefi, A.; Do, T. O. Photocatalytic Pathway toward Degradation of Environmental Pharmaceutical Pollutants: Structure, Kinetics and Mechanism Approach. Catal. Sci. Technol. 2017, 7(20), 4548–4569. DOI: 10.1039/C7CY00468K.
  • Chen, Q.; Xin, Y.; Zhu, X. Au-Pd Nanoparticles-decorated TiO2 Nanobelts for Photocatalytic Degradation of Antibiotic Levofloxacin in Aqueous Solution, Electrochimic. Acta 2015, 186, 34–42.
  • Yan, X.; Zhao, C.; Zhou, Y.; Wu, Z. J.; Yuan, J. M.; Li, W. S. Synthesis and Characterization of ZnTiO3 with High Photocatalytic Activity. Trans. Nonferrous Met. Soc. China 2015, 25, 2272–2278. DOI: 10.1016/S1003-6326(15)63841-9.
  • Prakash, K.; Senthil, K. P.; Latha, P.; Shanmugam, R.; Karuthapandian, S. Dry Synthesis of Water Lily Flower like SrO2/g-C3N4 Nanohybrids for the Visible Light Induced Superior Photocatalytic Activity. Mater. Res. Bull. 2017, 93, 112–122. DOI: 10.1016/j.materresbull.2017.04.018.
  • Zhang, H.; Li, S.; Lu, R.; Yu, A. Time-resolved Study on Xanthene Dye-sensitized Carbon Nitride Photocatalytic Systems. ACS. Appl. Mater. Int. 2015, 7(39), 21868–21874. DOI: 10.1021/acsami.5b06309.
  • Jia, T.; Li, M. M.; Ye, L.; Wiseman, S.; Liu, G.; Qu, J.; Tsang, S. E. The Remarkable Activity and Stability of a Dye-sensitized Single Molecular Layer MoS2 Ensemble for Photocatalytic Hydrogen Production. Chem. Commun. 2015, 51(70), 13496–13499. DOI: 10.1039/C5CC03871E.
  • Ali, S. S.; Qazi, I. A.; Arshad, M.; Khan, Z.; Voice, T. C.; Mehmood, C. T. Photocatalytic Degradation of Low Density Polyethylene (LDPE) Films Using Titania Nanotubes. Environ. Nanotechnol. Monit. Manage. 2016, 5, 44–53.
  • Shah, E. V.; Patel, C. M.; Roy, D. R. Structure, Electronic, Optical and Thermodynamic Behavior on the Polymerization of PMMA: A DFT Investigation. Comput. Biol. Chem. 2018, 72, 192–198. DOI: 10.1016/j.compbiolchem.2017.10.013.
  • Ali, U.; Karim, K. J. B. A.; Buang, N. A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. DOI: 10.1080/15583724.2015.1031377.
  • Cheng, B.; Zhao, J.; Xiao, L.; Cai, Q.; Guo, R.; Xiao, Y.; Lei, S. PMMA Interlayer-modulated Memory Effects by Space Charge Polarization in Resistive Switching Based on CuSCN-nanopyramids/ZnO-nanorods P-n Heterojunction. Sci. Rep. 2015, 5, 17859–17867. DOI: 10.1038/srep17859.
  • Ravindrachary, V.; Bhajantri, R. F.; Praveena, S. D.; Poojary, B.; Dutta, D.; Pujari, P. K. Optical and Microstructural Studies on Electron Irradiated PMMA: A Positron Annihilation Study. Polym. Degrad. Stab. 2010, 95(6), 1083–1091. DOI: 10.1016/j.polymdegradstab.2010.02.031.
  • Li, Y.; Zhao, H.; Yang, M. TiO2 Nanoparticles Supported on PMMA Nanofibers for Photocatalytic Degradation of Methyl Orange. J. Colloid. Interf. Sci. 2017, 508, 500–507. DOI: 10.1016/j.jcis.2017.08.076.
  • Poddar, M. K.; Sharma, S.; Moholkar, V. S. Investigations in Two-step Ultrasonic Synthesis of PMMA/ZnO Nanocomposites by In–situ Emulsion Polymerization. Polymer. 2016, 99, 453–469. DOI: 10.1016/j.polymer.2016.07.052.
  • Latha, P.; Prakash, K.; Karuthapandian, S. Facile Fabrication of Visible Light-driven CeO2/PMMA Thin Film Photocatalyst for Degradation of CR and MO Dyes. Res. Chem. Intermediat. 2018, 44(9), 5223–5240. DOI: 10.1007/s11164-018-3419-8.
  • Dukali, R. M.; Radović, I. M.; Stojanović, D. B.; Šević, D. D.; Radojević, V. J.; Jocić, D. M.; Aleksić, R. R. Electrospinning of Laser Dye Rhodamine B-doped Poly (Methyl Methacrylate) Nanofibers. J. Serb. Chem. Soc. 2014, 79(7), 867–880. DOI: 10.2298/JSC131014011D.
  • Al, I. A. D. H. A.; Sadik, F. Synthesis and Investigation of Phenol Red Dye Doped Polymer Films. Adv. Mater. Phys. Chem. 2016, 6(5), 120. DOI: 10.4236/ampc.2016.65013.
  • Matsuoka, M.; Ed. Infrared Absorbing Dyes; Springer Science & Business Media, 2013.
  • Fabian, J.; Nakazumi, H.; Matsuoka, M. Near-infrared Absorbing Dyes. Chem. Rev. 1992, 92(6), 1197–1226. DOI: 10.1021/cr00014a003.
  • Alkan, C.; Sarı, A.; Karaipekli, A.; Uzun, O. Preparation, Characterization, and Thermal Properties of Microencapsulated Phase Change Material for Thermal Energy Storage. Sol. Energy. Mat. Sol. C. 2009, 93(1), 143–147. DOI: 10.1016/j.solmat.2008.09.009.
  • Kupka, T.;. Complete Basis Set B3LYP NMR Calculations of CDCl3 Solvent’s Water Fine Spectral Details. Magn. Reson. Chem. 2008, 46(9), 851–858. DOI: 10.1002/mrc.2270.
  • Oakes, J.; Gratton, P. Kinetic Investigations of the Oxidation of Methyl Orange and Substituted Arylazonaphthol Dyes by Peracids in Aqueous Solution. J. Chem. Soc., Perk. T.2. 1998, 12, 2563–2568. DOI: 10.1039/a807272h.
  • Kresze, G.; Berger, M.; Claus, P. K.; Rieder, W. 13C NMR Spectra of Some N‐aryl Substituted Sulphur–nitrogen Compounds. Organ. Magnet. Res. 1976, 8(3), 170–172. DOI: 10.1002/mrc.1270080315.
  • Meier, H.;. Photosensitization of Inorganic solid.Photochem. Photobiol. 1972, 16, 219–241. DOI: 10.1111/j.1751-1097.1972.tb06295.x.
  • Wang, J.; Chen, X.; Kang, Y.; Yang, G.; Yu, L.; Zhang, P. Preparation of Superhydrophobic Poly (Methyl Methacrylate)-silicon Dioxide Nanocomposite Films. Appl. Surf. Sci. 2010, 257(5), 1473–1477. DOI: 10.1016/j.apsusc.2010.08.075.
  • Robin, M. B.; Simpson, W. T. Assignment of Electronic Transitions in Azo Dye Prototypes. J. Chem. Phys. 1962, 36(3), 580–588. DOI: 10.1063/1.1732574.
  • Qiu, L.; Shen, Y.; Hao, J.; Zhai, J.; Zu, F.; Zhang, T.; Persoons, A. Study on Novel Second-order NLO Azo-based Chromophores Containing Strong Electron-withdrawing Groups and Different Conjugated Bridges. J. Mater. Sci. 2004, 39(7), 2335–2340. DOI: 10.1023/B:JMSC.0000019994.38191.fe.
  • Snehalatha, M.; Ravikumar, C.; Joe, I. H.; Sekar, N.; Jayakumar, V. S. Spectroscopic Analysis and DFT Calculations of a Food Additive Carmoisine. Spectrochim. Acta. A 2009, 72(3), 654–662. DOI: 10.1016/j.saa.2008.11.017.
  • Latha, P.; Dhanabackialakshmi, R.; Kumar, P. S.; Karuthapandian, S. Synergistic Effects of Trouble Free and 100% Recoverable CeO2/Nylon Nanocomposite Thin Film for the Photocatalytic Degradation of Organic Contaminants. Sep. Purif. Technol. 2016, 168, 124–133. DOI: 10.1016/j.seppur.2016.05.038.
  • Saravanakumar, K.; Ramjan, M. M.; Suresh, P.; Muthuraj, V. Fabrication of Highly Efficient Visible Light Driven Ag/CeO2 Photocatalyst for Degradation of Organic Pollutants. J. Alloy. Compd. 2016, 664, 149–160. DOI: 10.1016/j.jallcom.2015.12.245.
  • Latha, P.; Prakash, K.; Karuthapandian, S. Enhanced Visible Light Photocatalytic Activity of CeO2/alumina Nanocomposite: Synthesized via Facile Mixing-calcination Method for Dye Degradation. Adv. Powder. Technol. 2017, 28(11), 2903–2913. DOI: 10.1016/j.apt.2017.08.017.
  • Li, Q.; Jin, Z.; Peng, Z.; Li, Y.; Li, S.; Lu, G. High-efficient Photocatalytic Hydrogen Evolution on Eosin Y-sensitized Ti− MCM41 Zeolite under Visible-light Irradiation. J. Phys. Chem. C 2007, 111(23), 8237–8241. DOI: 10.1021/jp068703b.
  • Liu, X.; Zhao, L.; Lai, H.; Wei, Y.; Yang, G.; Yin, S.; Yi, Z. Graphene Decorated MoS2 for Eosin Y-sensitized Hydrogen Evolution from Water under Visible Light. RSC Adv. 2017, 7(74), 46738–46744. DOI: 10.1039/C7RA09009A.
  • Kumar, P. S.; Selvakumar, M.; Bhagabati, P.; Bharathi, B.; Karuthapandian, S.; Balakumar, S. CdO/ZnO Nanohybrids: Facile Synthesis and Morphologically Enhanced Photocatalytic Performance. RSC Adv. 2014, 4(62), 32977–32986. DOI: 10.1039/C4RA02502D.
  • Kumar, P. S.; Selvakumar, M.; Babu, S. G.; Karuthapandian, S. Veteran Cupric Oxide with New Morphology and Modified Bandgap for Superior Photocatalytic Activity against Different Kinds of Organic Contaminants (Acidic, Azo and Triphenylmethane Dyes). Mater. Res. Bull. 2016, 83, 522–533. DOI: 10.1016/j.materresbull.2016.06.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.