128
Views
1
CrossRef citations to date
0
Altmetric
Adsorption

Recycling of copper-adsorbed titanate nanotubes (TNTs) for photocatalytic hydrogen production

ORCID Icon, , &
Pages 1672-1686 | Received 15 Jan 2020, Accepted 23 Jun 2020, Published online: 13 Jul 2020

References

  • Thilagan, J.; Gopalakrishnan, S.; Kannadasan, T. A Comparative Study on Adsorption of Copper (II) Ions from Aqueous Solution by (A) Chitosan Blended with Cellulose Cross Linked by Formaldehyde (B) by Chitosan Immobilized on Red Soil (C) Chitosan Reinforced by Banana Stem Fiber. Int. J. Appl. Eng. Technol. 2013, 3, 35–60.
  • Lu, P. J.; Hu, W. W.; Chen, T. S.; Chern, J. M. Adsorption of Copper-citrate Complexes on Chitosan: Equilibrium Modeling. Bioresour. Technol. 2010, 101(4), 1127–1134. DOI: 10.1016/j.biortech.2009.09.055.
  • Vinodh, R.; Padmavathi, R.; Sangeetha, D. Separation of Heavy Metals from Water Samples Using Anion Exchange Polymers by Adsorption Process. Desalination. 2011, 267(2–3), 267–276. DOI: 10.1016/j.desal.2010.09.039.
  • Li, Y.; Pi, L.; Hu, W.; Chen, M.; Luo, Y.; Li, Z.; Su, S.; Gan, Z.; Ding, S. Concentrations and Health Risk Assessment of Metal(loid)s in Indoor Dust Form Two Typical Cities of China. Environ. Sci. Pollut. R. 2016, 23(9), 9082–9092. DOI: 10.1007/s11356-016-6045-2.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metal Toxicity and the Environment. Mol. Clin. Environ. Toxicol. 2012, 101. Experientia Supplementum. Springer, Basel. DOI: 10.1007/978-3-7643-8340-4_6.
  • White, R. L.; White, C. M.; Turgut, H.; Massoud, A.; Tian, Z. R. Comparative Studies on Copper Adsorption by Graphene Oxide and Functionalized Graphene Oxide Nanoparticles. J. Taiwan Inst. Chem. E. 2018, 85, 18–28. DOI: 10.1016/j.jtice.2018.01.036.
  • Boulay, N.; Edwards, M. Copper in the Urban Water Cycle. Crit. Rev. Env. Sci. Tec. 2000, 30(3), 297–326. DOI: 10.1080/10643380091184192.
  • Ng, J. C. Y.; Cheung, W. H.; McKay, G. Equilibrium Studies of the Sorption of Cu(II) Ions onto Chitosan. J. Colloid. Interface Sci. 2002, 255(1), 64–74. DOI: 10.1006/jcis.2002.8664.
  • Li, N.; Bai, R. Copper Adsorption on Chitosan-cellulose Hydrogel Beads: Behaviors and Mechanisms. Sep. Purif. Technol. 2005, 42(3), 237–247. DOI: 10.1016/j.seppur.2004.08.002.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92(3), 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Bali, M.; Tlili, H. Removal of Heavy Metals from Wastewater Using Infiltration-percolation Process and Adsorption on Activated Carbon. Int. J. Environ. Sci. Technol. 2019, 16(1), 249–258. DOI: 10.1007/s13762-018-1663-5.
  • Hinojosa-Reyes, M.; Camposeco-Solis, R.; Ruiz, F. H2Ti3O7 Titanate Nanotubes for Highly Effective Adsorption of Basic Fuchsin Dye for Water Purification. Micropor. Mesopor. Mat. 2019, 276, 183–191. DOI: 10.1016/j.micromeso.2018.09.035.
  • Hinojosa-Reyes, M.; Camposeco-Solis, R.; Ruiz, F.; Martínez, N. N.; Compean-Jasso, M. H2Ti3O7 Nanotubes Decorated with Silver Nanoparticles for Photocatalytic Degradation of Atenolol. J. Nanomater. 2017, 2017, 1–11. DOI: 10.1155/2017/9610419.
  • Niu, H. Y.; Wang, J. M.; Shi, Y. L.; Cai, Y. Q.; Wei, F. S. Adsorption Behavior of Arsenic onto Protonated Titanate Nanotubes prepared via Hydrothermal Method. Micropor. Mesopor. Mat. 2009, 122(1–3), 28–35. DOI: 10.1016/j.micromeso.2009.02.005.
  • Liu, W.; Ni, J.; Yin, X. Synergy of Photocatalysis and Adsorption for Simultaneous Removal of Cr(VI) and Cr(III) with TiO2 and Titanate Nanotubes. Water Res. 2014, 53, 12–25. DOI: 10.1016/j.watres.2013.12.043.
  • Liu, S. S.; Lee, C. K.; Chen, H. C.; Wang, C. C.; Juang, L. C. Application of Titanate Nanotubes for Cu(II) Ions Adsorptive Removal from Aqueous Solution. Chem. Eng. J. 2009, 147(2–3), 188–193. DOI: 10.1016/j.cej.2008.06.034.
  • Chen, Y. C.; Lo, S. L.; Kuo, J. Pb(II) Adsorption Capacity and Behavior of Titanate Nanotubes Made by Microwave Hydrothermal Method. Colloids Surf. A. 2010, 361(1–3), 126–131. DOI: 10.1016/j.colsurfa.2010.03.017.
  • Xiong, L.; Chen, C.; Chen, Q.; Ni, J. Adsorption of Pb(II) and Cd(II) from Aqueous Solutions Using Titanate Nanotubes prepared via Hydrothermal Method. J. Hazard. Mat. 2011, 189(3), 741–748. DOI: 10.1016/j.jhazmat.2011.03.006.
  • Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972, 238(5358), 37–38. DOI: 10.1038/238037a0.
  • Choi, S. Y.; Mamak, M.; Coombs, N.; Chopra, N.; Ozin, G. A. Thermally Stable Two-dimensional Hexagonal Mesoporous Nanocrystalline Anatase, meso-nc-TiO2: Bulk and Crack-free Thin Film Morphologies. Adv. Funct. Mater. 2004, 14(4), 335–344. DOI: 10.1002/adfm.200305039.
  • Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania Nanotubes Prepared by Chemical Processing. Adv. Mater. 1999, 11(15), 1307–1311. DOI: 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H.
  • Bavykin, D. V.; Carravetta, M.; Kulak, A. N.; Walsh, F. C. Application of Magic-angle Spinning NMR to Examine the Nature of Protons in Titanate Nanotubes. Chem. Mater. 2010, 22(8), 2458–2465. DOI: 10.1021/cm903100a.
  • Morgado Jr, E.; de Abreu, M. A. S.; Pravia, O. R. C.; Marinkovic, B. A.; Jardim, P. M.; Rizzo, F. C.; Aráujo, A. S. A Study on the Structure and Thermal Stability of Titanate Nanotubes as A Function of Sodium Content. Solid State Sci. 2006, 8(8), 888–900. DOI: 10.1016/j.solidstatesciences.2006.02.039.
  • Bem, V.; Neves, M. C.; Nunes, M. R.; Silvestre, A. J.; Monteiro, O. C. Influence of the Sodium/proton Replacement on the Structural, Morphological and Photocatalytic Properties of Titanate Nanotubes. J. Photochem. Photobiol. A. 2012, 232, 50–56. DOI: 10.1016/j.jphotochem.2012.02.002.
  • Chiba, K.; Kijima, N.; Takahashi, Y.; Idemoto, Y.; Akimoto, J. Synthesis, Structure, and Electrochemical Li-ion Intercalation Properties of Li2Ti3O7 with Na2Ti3O7-type Layered Structure. Solid State Ion. 2008, 178(33–34), 1725–1730. DOI: 10.1016/j.ssi.2007.11.004.
  • Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57(4), 603–619. DOI: 10.1351/pac198557040603.
  • Zhou, Z.; Xiao, H.; Zhang, F.; Zhang, X.; Tang, Y. Solvothermal Synthesis of Na2Ti3O7 Nanowires Embedded in 3D Graphene Networks as an Anode for High-performance Sodium-ion Batteries. Electrochim. Acta. 2016, 211, 430–436. DOI: 10.1016/j.electacta.2016.06.036.
  • Bakardjieva, J.; Šubrt, J.; Štengl, V.; Dianez, M. J.; Sayagues, M. J. Photoactivity of Anatase–rutile TiO2 Nanocrystalline Mixtures Obtained by Heat Treatment of Homogeneously Precipitated Anatase. Appl. Catal. B. 2005, 58(3–4), 193–202. DOI: 10.1016/j.apcatb.2004.06.019.
  • Nakahira, A.; Kubo, T.; Numako, C. Formation Mechanism of TiO2-derived Titanate Nanotubes Prepared by the Hydrothermal Process. Inorg. Chem. 2010, 49, 5845–5852. DOI: 10.1021/ic9025816.
  • Wang, W.; Yu, C.; Lin, Z.; Hou, J.; Zhu, H.; Jiao, S. Microspheric Na2Ti3O7 Consisting of Tiny Nanotubes: An Anode Material for Sodium-ion Batteries with Ultrafast Charge-discharge Rates. Nanoscale. 2013, 5, 594–599. DOI: 10.1039/C2NR32661B.
  • Wang, Y.; Liu, H. Preparation and Characterization of Na2Ti3O7, H2Ti3O7 and TiO2 Nanobelts. Adv. Mater. Res. 2011, 306–307, 1233–1237. DOI: 10.4028/www.scientific.net/AMR.306-307.1233.
  • Bavykin, D. V.; Redmond, K. E.; Nias, V. P.; Kulak, A. N.; Walsh, F. C. The Effect of Ionic Charge on the Adsorption of Organic Dyes onto Titanate Nanotubes. Aust. J. Chem. 2010, 63(2), 270–275. DOI: 10.1071/CH09326.
  • Bavykin, D. V.; Milsom, E. V.; Marken, F.; Kim, D. H.; Marsh, D. H.; Riley, D. J.; Walsh, F. C.; El-Abiary, K. H.; Lapkin, A. A. A Novel Cation-binding TiO2 Nanotube Substrate for Electro- and Bioelectro-catalysis. Electrochem. Commun. 2005, 7(10), 1050–1058. DOI: 10.1016/j.elecom.2005.07.010.
  • Liu, W.; Wang, T.; Borthwick, A. G. L.; Wang, Y.; Yin, X.; Li, X.; Ni, J. Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto Titanate Nanotubes: Competition and Effect of Inorganic Ions. Sci. Total Environ. 2013, 456–457, 171–180. DOI: 10.1016/j.scitotenv.2013.03.082.
  • Li, N.; Zhang, L.; Chen, Y.; Tian, Y.; Wang, H. Adsorption Behavior of Cu(II) onto Titanate Nanofibers Prepared by Alkali Treatment. J. Hazard. Mater. 2011, 189(1–2), 265–272. DOI: 10.1016/j.jhazmat.2011.02.031.
  • Bavykin, D. V.; Walsh, F. C. Kinetics of Alkali Metal Ion Exchange into Nanotubular and Nanofibrous Titanates. J. Phys. Chem. C. 2007, 111(40), 14644–14651. DOI: 10.1021/jp073799a.
  • Ryu, J.; Kim, S.; Hong, H. J.; Hong, J.; Kim, M.; Ryu, T.; Park, I. S.; Chung, K. S.; Jang, J. S.; Kim, B. G. Strontium Ion (Sr2+) Separation from Seawater by Hydrothermally Structured Titanate Nanotubes: Removal Vs. Recovery. Chem. Eng. J. 2016, 304, 503–510. DOI: 10.1016/j.cej.2016.06.131.
  • Wang, T.; Liu, W.; Xu, N.; Ni, J. Adsorption and Desorption of Cd(II) onto Titanate Nanotubes and Efficient Regeneration of Tubular Structure. J. Hazard. Mater. 2013, 250–251, 379–386. DOI: 10.1016/j.jhazmat.2013.02.016.
  • Aljeboree, A. M.; Alshirifi, A. N.; Alkaim, A. F. Kinetics and Equilibrium Study for the Adsorption of Textile Dyes on Coconut Shell Activated Carbon. Arab. J. Chem. 2017, 10, S3381–S3393. DOI: 10.1016/j.arabjc.2014.01.020.
  • Hinojosa-Reyes, M.; Camposeco-Solis, R.; Zanella, R.; Rodríguez-González, V. Hydrogen Production by Tailoring the Brookite and Cu2O Ratio of Sol-gel Cu-TiO2 Photocatalysts. Chemosphere. 2017, 184, 992–1002. DOI: 10.1016/j.chemosphere.2017.06.066.
  • Wu, L.; Yang, X.; Li, J.; Huang, Y.; Li, X. Fabrication of Titanium Dioxide Nanotubes with Good Morphology at High Calcination Temperature and Their Photocatalytic Activity. Mater. Chem. Phys. 2017, 202, 136–142. DOI: 10.1016/j.matchemphys.2017.09.022.
  • Iihoshi, T.; Ohwaki, T.; Vequizo, J. J. M.; Yamakata, A. Improvement of Photocatalytic Activity under Visible-light Irradiation by Heterojunction of Cu Ion Loaded WO3 and Cu Ion Loaded N-TiO2. Appl. Catal. B. 2019, 248, 249–254. DOI: 10.1016/j.apcatb.2019.01.046.
  • Xu, S.; Ng, J.; Du, J.; Liu, J.; Sun, D. D. Highly Efficient TiO2 Nanotube Photocatalyst for Simultaneous Hydrogen Production and Copper Removal from Water. Int. J. Hydrogen Energ. 2011, 36(11), 6538–6545. DOI: 10.1016/j.ijhydene.2011.03.047.
  • Svintsitskiy, D. A.; Kardash, T. Y.; Stonkus, O. A.; Slavinskaya, E. M.; Stadnichenko, A. I.; Koscheev, S. V.; Chupakhin, A. P.; Boronin, A. I. In Situ XRD, XPS, TEM, and TPR Study of Highly Active in CO Oxidation CuO Nanopowders. J. Phys. Chem. C. 2013, 117(28), 14588–14599. DOI: 10.1021/jp403339r.
  • Lim, Y. F.; Chua, C. S.; Lee, C. J. J.; Chi, D. Sol-gel Deposited Cu2O and CuO Thin Films for Photocatalytic Water Splitting. Phys. Chem. Chem. Phys. 2014, 16, 25928–25934. DOI: 10.1039/C4CP03241A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.