288
Views
10
CrossRef citations to date
0
Altmetric
Extraction

Ultrahigh pressure extraction of polysaccharide from Morinda officinalis and effect on the polysaccharide structure

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 1741-1751 | Received 26 Mar 2020, Accepted 07 Jul 2020, Published online: 13 Aug 2020

References

  • Chan, C.; Yusoff, R.; Ngoh, G.; Kung, F. W. Microwave-assisted Extractions of Active Ingredients from Plants. J. Chromatogr. 2011, 1218(37), 6213–6225. DOI: 10.1016/j.chroma.2011.07.040.
  • Joo, C. G.; Lee, K. H.; Park, C.; Joo, I. W. Correlation of Increased Antioxidation with the Phenolic Compound and Amino Acids Contents of Camellia Sinensis Leaf Extracts following Ultrahigh Pressure Extraction. J. Ind. Eng. Chem. 2012, 18(2), 623–628. DOI: 10.1016/j.jiec.2011.11.106.
  • Xi, J. Ultrahigh Pressure Extraction of Bioactive Compounds from plantsA Review. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1097–1106. DOI: 10.1080/10408398.2013.874327.
  • Jun, X. High-Pressure Processing as Emergent Technology for the Extraction of Bioactive Ingredients from Plant Materials. Crit. Rev. Food Sci. Nutr. 2013, 53(8), 837–852. DOI: 10.1080/10408398.2011.561380.
  • Zhang, S. Q.; Chen, R. Z.; Wu, H.; Wang, C. Z. Ginsenoside Extraction from Panax Quinquefolium L. (American Ginseng) Root by Using Ultrahigh Pressure. J. Pharm. Biomed. Anal. 2006, 41(1), 57–63. DOI: 10.1016/j.jpba.2005.10.043.
  • Yan, L.; Xi, J. Micro-mechanism Analysis of Ultrahigh Pressure Extraction from Green Tea Leaves by Numerical Simulation. Sep. Purif. Technol. 2017, 180, 51–57. DOI: 10.1016/j.seppur.2017.02.041.
  • Corrales, M.; Garcia, A. F.; Butz, P.; Tauscher, B. Extraction of Anthocyanins from Grape Skins Assisted by High Hydrostatic Pressure. J. Food Eng. 2009, 90(4), 415–421. DOI: 10.1016/j.jfoodeng.2008.07.003.
  • Shin, J.; Ahn, S.; Choi, S.; Lee, D.; Kim, B. Ultrahigh Pressure Extraction (UHPE) of Ginsenosides from Korean Panax Ginseng Powder. Food Sci. Biotechnol. 2010, 19(3), 743–748. DOI: 10.1007/s10068-010-0104-0.
  • Zhu, M. Y.; Wang, C. J.; Zhang, H. S.; Pei, X. W.; Fen, J. M. Protective Effect of Polysaccharides from Morinda Officinalis on Bone Loss in Ovariectomized Rats. Int. J. Biol. Macromol. 2008, 43(3), 276–278. DOI: 10.1016/j.ijbiomac.2008.06.008.
  • Chen, X. J.; li, A. H. Study on Immune Pharmacology of Polysaccharides Officinalis Officinalis. J. Pract. Med. 1995, 11(5), 348–349.
  • Zhu, M.; Wang, C.; Zhang, H. Protective Effect of Polysaccharides from Morinda Officinalis on Bone Loss in Ovariectomized Rats. Carbohydr. Polym. 2008, 44, 257–261.
  • Zhang, H.; Li, J.; Li, G.; Wang, D.; Zhu, L.; Yang, D. Structural Characterization and Anti-fatigue Activity of Polysaccharides from the Roots of Morinda Officinalis. Int. J. Biol. Macromol. 2009, 44(3), 257–261. DOI: 10.1016/j.ijbiomac.2008.12.010.
  • Zhu, M.; Wang, C.; Gu, Y.; He, C.; Teng, X.; Zhang, P.; Lin, N. Extraction, Characterization of Polysaccharides from Morinda Officinalis and Its Antioxidant Activities. Carbohydr. Polym. 2009, 78(3), 497–501. DOI: 10.1016/j.carbpol.2009.05.008.
  • Zhou, R.; Liu, P.; Tan, M. Effect of Astragalus Mongholicus Injection on Proliferation and Apoptosis of Hormone Sensitive (MCF-7) Breast Cancer Cell Lines with Physiological Dose E2. J. Chinese Med. Mater. 2009, 32(5), 744–747.
  • Hammi, K. M.; Hammami, M.; Rihouey, C.; Le Cerf, D.; Ksouri, R.; Majdoub, H. Optimization Extraction of Polysaccharide from Tunisian Zizyphus Lotus Fruit by Response Surface Methodology: Composition and Antioxidant Activity. Food Chem. 2016, 212, 476–484. DOI: 10.1016/j.foodchem.2016.06.004.
  • Zhang, S.; Wang, Z.; Cheng, G.; Wang, T.; Ni, Z.; Lin, J. Optimization for Ultrahigh Pressure Extraction of Scutellaria Barbata by Central Composite Design-response Surface Methodology. Afr. J. Biotechnol. 2011, 10(65), 14637–14643. DOI: 10.5897/AJB11.1841.
  • Tao, X.; Zhan, Y.; Zhou, Q.; Feng, F. Optimization of UltraHigh Pressure Extraction Process of Polysaccharides from Dendrobium Candidum by Response Surface Method. Adv. Mater. Res. 2012, 1914, 1796–1800. DOI: 10.4028/www.scientific.net/AMR.550-553.1796.
  • Santos, M. D.; Petkowicz, C. L.; Haminiuk, C. W.; Candido, L. M. Polysaccharide Isolated from Gabiroba (Campomanesia Xanthocarpa Berg): Chemical Properties and Rheology Profile. Polimeros Ciencia E Tecnologia. 2010, 20(5), 352–358. DOI: 10.1590/S0104-14282010005000056.
  • Zhang, J.; Wen, C.; Qin, W.; Qin, P.; Zhang, H.; Duan, Y. Ultrasonic-enhanced Subcritical Water Extraction of Polysaccharides by Two Steps and Its Characterization from Lentinus Edodes. Int. J. Biol. Macromol. 2018, 118, 2269–2277. DOI: 10.1016/j.ijbiomac.2018.07.098.
  • Zou, X.; Liu, Y.; Tao, C.; Liu, Y.; Liu, M.; Wu, J.; Lv, Z. CO2 Supercritical Fluid Extraction and Characterization of Polysaccharide from Bamboo (Phyllostachys Heterocycla) Leaves. J. Food Meas. Charact. 2018, 12(1), 35–44. DOI: 10.1007/s11694-017-9614-2.
  • Chen, F.; Huang, G. Antioxidant Activity of Polysaccharides from Different Sources of Ginseng. Int. J. Biol. Macromol. 2019, 125, 906–908. DOI: 10.1016/j.ijbiomac.2018.12.134.
  • Tseng, Y.; Yang, J.; Mau, J. Antioxidant Properties of Polysaccharides from Ganoderma Tsugae. Food Chem. 2008, 107(2), 732–738. DOI: 10.1016/j.foodchem.2007.08.073.
  • Chen, F.; Huang, G.; Yang, Z.; Hou, Y. Antioxidant Activity of Momordica Charantia Polysaccharide and Its Derivatives. Int. J. Biol. Macromol. 2019, 138, 673–680. DOI: 10.1016/j.ijbiomac.2019.07.129.
  • Mangialardo, S.; Piccirilli, F.; Perucchi, A.; Dore, P.; Postorino, P. Raman Analysis of Insulin Denaturation Induced by High Pressure and Thermal Treatments. J. Raman Spectrosc. 2012, 43(6), 692–700. DOI: 10.1002/jrs.3097.
  • Chen, R. Z.; Jin, C.; Li, H. P.; Liu, Z.; Lu, J.; Li, S. Ultrahigh Pressure Extraction of Polysaccharides from Cordyceps Militaris and Evaluation of Antioxidant Activity. Sep. Purif. Technol. 2014, 134, 90–99. DOI: 10.1016/j.seppur.2014.07.017.
  • Chen, R.; Meng, F.; Zhang, S.; Liu, Z. Effects of Ultrahigh Pressure Extraction Conditions on Yields and Antioxidant Activity of Ginsenoside from Ginseng. Sep. Purif. Technol. 2009, 66(2), 340–346. DOI: 10.1016/j.seppur.2008.12.026.
  • Leung, P. H.; Zhao, S.; Ho, K. P.; Wu, J. Y. Chemical Properties and Antioxidant Activity of Exopolysaccharides from Mycelial Culture of Cordyceps Sinensis Fungus Cs-HK1. Food Chem. 2009, 114(4), 1251–1256. DOI: 10.1016/j.foodchem.2008.10.081.
  • Tian, L.; Zhao, Y.; Guo, C.; Yang, X. A Comparative Study on the Antioxidant Activities of an Acidic Polysaccharide and Various Solvent Extracts Derived from Herbal Houttuynia Cordata. Carbohydr. Polym. 2011, 83(2), 537–544. DOI: 10.1016/j.carbpol.2010.08.023.
  • Yang, B.; Jiang, S.; Wang, R.; Zhao, M.; Sun, J. Ultra-high Pressure Treatment Effects on Polysaccharides and Lignins of Longan Fruit Pericarp. Food Chem. 2008, 112, 428–431. DOI: 10.1016/j.foodchem.2008.05.097.
  • Liu, C. Extraction of Astragalus Polysaccharides from Astragalus Membranaceus under Normal Temperature and High Pressure, Jilin University thesis. 2005, 6, 78. Available: http://kns.cnki.net/KCMS/detail/detail.aspx?FileName=2005105717.nh&DbName=CMFD2005.
  • Butz, P.; Koller, W. D.; Tauscher, B.; Wolf, S. Ultra-high Pressure Processing of Onions: Chemical and Sensory Changes. Lebensmittel-Wissenschaft Technol. 1994, 27(5), 463–467. DOI: 10.1006/fstl.1994.1093.
  • Altuner, E. M.; Ceter, T.; Alpas, H. High Hydrostatic Pressure Processing: A Method Having High Success Potential in Pollen Protein Extraction. High Pressure Res. 2012, 32, 291–298. DOI: 10.1080/08957959.2012.678341.
  • Wu, Z. Effect of Different Drying Methods on Chemical Composition and Bioactivity of Finger Citron Polysaccharides. Int. J. Biol. Macromol. 2015, 76, 218–223. DOI: 10.1016/j.ijbiomac.2015.02.043.
  • Zeng, H.; Zhang, Y.; Zhao, Y.; Tian, Y.; Miao, S. Extraction Optimization, Structure and Antioxidant Activities of Fortunella Margarita Swingle Polysaccharides. Int. J. Biol. Macromol. 2015, 74, 232–242. DOI: 10.1016/j.ijbiomac.2014.12.013.
  • Hromadkova, Z.; Kostalova, Z.; Vrchotova, N.; Ebringerova, A. Non-cellulosic Polysaccharides from the Leaves of Small Balsam (Impatiens Parviflora DC.). Carbohydr. Res. 2014, 389, 147–153. DOI: 10.1016/j.carres.2014.01.016.
  • Kacurakova, M.; Capek, P.; Sasinkova, V.; Wellner, N.; Ebringerova, A. FT-IR Study of Plant Cell Wall Model Compounds: Pectic Polysaccharides and Hemicelluloses. Carbohydr. Polym. 2000, 43(2), 195–203. DOI: 10.1016/S0144-8617(00)00151-X.
  • Nep, E. I.; Conway, B. R. Physicochemical Characterization of Grewia Polysaccharide Gum: Effect of Drying Method. Carbohydr. Polym. 2011, 84(1), 446–453. DOI: 10.1016/j.carbpol.2010.12.005.
  • Figueiro, S. D.; Goes, M. C.; Moreira, R. A.; Sombra, A. On the Physico-chemical and Dielectric Properties of Glutaraldehyde Crosslinked Galactomannan-collagen Films. Carbohydr. Polym. 2004, 56(3), 313–320. DOI: 10.1016/j.carbpol.2004.01.011.
  • Gomez, M. C.; Montero, P.; Gimenez, B. Extraction of Gelatin from Fish Skins by High Pressure Treatment. Food Hydrocolloids. 2005, 19, 923–928. DOI: 10.1016/j.foodhyd.2004.12.011.
  • Hu, J.; Nie, S.; Xie, M. High Pressure Homogenization Increases Antioxidant Capacity and Short-chain Fatty Acid Yield of Polysaccharide from Seeds of Plantago Asiatica L. Food Chem. 2013, 138(4), 2338–2345. DOI: 10.1016/j.foodchem.2012.12.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.