368
Views
9
CrossRef citations to date
0
Altmetric
Adsorption

Modification of biochar prepared from olive oil processing waste to enhance phenol removal from synthetic and olive mill wastewater

ORCID Icon, , &
Pages 1659-1671 | Received 28 May 2020, Accepted 08 Jul 2020, Published online: 21 Jul 2020

References

  • National Center for Biotechnology Information. Compound Summary for CID 996; Phenol 2018 19/05/18 25/05/2018]; https://pubchem.ncbi.nlm.nih.gov/compound/996.
  • Komnitsas, K. A.; Zaharaki, D. Morphology of Modified Biochar and Its Potential for Phenol Removal from Aqueous Solutions. Front. Environ. Sci. 2016, 4(26). DOI: 10.3389/fenvs.2016.00026.
  • Tsagaraki, E.; Lazarides, H. N.; Petrotos, K. B. Olive Mill Wastewater Treatment, in Utilization of By-products and Treatment of Waste in the Food Industry; Springer: US, 2007; pp 133–157.
  • Albalasmeh, A. A.; Alajlouni, M. A.; Ghariabeh, M. A.; Rusan, M. J. Short-Term Effects of Olive Mill Wastewater Land Spreading on Soil Physical and Hydraulic Properties. Water Air Soil Pollut. 2019, 230(8), 208. DOI: 10.1007/s11270-019-4243-5.
  • Rusan, M. J. M.; Albalasmeh, A. A.; Zuraiqi, S.; Bashabsheh, M. Evaluation of Phytotoxicity Effect of Olive Mill Wastewater Treated by Different Technologies on Seed Germination of Barley (Hordeum Vulgare L.). Environ. Sci. Pollut. Res. 2015, 22(12), 9127–9135. DOI: 10.1007/s11356-014-4004-3.
  • Mohan, D.; Sarswat, A.; Ok, Y. S.; Pittman, C. U. Organic and Inorganic Contaminants Removal from Water with Biochar, a Renewable, Low Cost and Sustainable Adsorbent-a Critical Review. Bioresour. Technol. 2014, 160, 191–202. DOI: 10.1016/j.biortech.2014.01.120.
  • Li, S.; Zou, D.; Li, L.; Wu, L.; Liu, F.; Zeng, X.; Wang, H.; Zhu, Y.; Xiao, Z. Evolution of Heavy Metals during Thermal Treatment of Manure: A Critical Review and Outlooks. Chemosphere. 2020, 247, 125962. DOI: 10.1016/j.chemosphere.2020.125962.
  • Li, L.; Zou, D.; Xiao, Z.; Zeng, X.; Zhang, L.; Jiang, L.; Wang, A.; Ge, D.; Zhang, G.; Liu, F. Biochar as a Sorbent for Emerging Contaminants Enables Improvements in Waste Management and Sustainable Resource Use. J. Cleaner Prod. 2019, 210, 1324–1342. DOI: 10.1016/j.jclepro.2018.11.087.
  • Han, Y.; Boateng, A. A.; Qi, P. X.; Lima, I. M.; Chang, J. Heavy Metal and Phenol Adsorptive Properties of Biochars from Pyrolyzed Switchgrass and Woody Biomass in Correlation with Surface Properties. J. Environ. Manage. 2013, 118, 196–204. DOI: 10.1016/j.jenvman.2013.01.001.
  • Oh, S.-Y.; Seo, Y.-D. Sorption of Halogenated Phenols and Pharmaceuticals to Biochar: Affecting Factors and Mechanisms. Environ. Sci. Pollut. Res. 2016, (23), 951–961. DOI: 10.1007/s11356-015-4201-8.
  • Hall, K. E.; Calderon, M. J.; Spokas, K. A.; Cox, L.; Koskinen, W. C.; Novak, J.; Cantrell, K. Phenolic Acid Sorption to Biochars from Mixtures of Feedstock Materials. Water, Air, Soil Pollut. 2014, 225(7), 1–9. DOI: 10.1007/s11270-014-2031-9.
  • Braghiroli, F. L.; Bouafif, H.; Hamza, N.; Neculita, C. M.; Koubaa, A. Production, Characterization, and Potential of Activated Biochar as Adsorbent for Phenolic Compounds from Leachates in a Lumber Industry Site. Environ. Sci. Pollut. Res. 2018, 25(26), 26562–26575. DOI: 10.1007/s11356-018-2712-9.
  • R.; Ramavandi, B.; Ardjmand, M.; Heydarinasab, A. Efficient Phenol Removal from Petrochemical Wastewater Using biochar-La/ultrasonic/persulphate System: Characteristics, Reusability, and Kinetic Study. Environ. Technol. 2019, 40(7),822-834.
  • Yi, Y.; Huang, Z.; Lu, B.; Xian, J.; Tsang, E. P.; Cheng, W.; Fang, J.; Fang, Z. Magnetic Biochar for Environmental Remediation: A Review. Bioresour. Technol. 2020, 298, 122468. DOI: 10.1016/j.biortech.2019.122468.
  • Zhou, X.; Zhou, J.; Liu, Y.; Wang, Y.; Ren, J.; Ling, B. Preparation of Magnetic Biochar Derived from Cyclosorus Interruptus for the Removal of Phenolic Compounds: Characterization and Mechanism. Sep. Sci. Technol. (Philadelphia). 2018, 53(9), 1307–1318. DOI: 10.1080/01496395.2018.1444056.
  • Abussaud, B.; Asmaly, H. A.; Saleh, T. A.; Gupta, V. K.; laoui, T.; Atieh, M. A. Sorption of Phenol from Waters on Activated Carbon Impregnated with Iron Oxide, Aluminum Oxide and Titanium Oxide. J. Mol. Liq. 2016, 213, 351–359. DOI: 10.1016/j.molliq.2015.08.044.
  • Hao, Z.; Wang, C.; Yan, Z.; Jiang, H.; Xu, H. Magnetic Particles Modification of Coconut Shell-derived Activated Carbon and Biochar for Effective Removal of Phenol from Water. Chemosphere. 2018, 211, 962–969. DOI: 10.1016/j.chemosphere.2018.08.038.
  • El Hanandeh, A.;. Carbon Abatement via Treating the Solid Waste from the Australian Olive Industry in Mobile Pyrolysis Units: LCA with Uncertainty Analysis. Waste Manage. Res. 2013, 31(4), 341–352. DOI: 10.1177/0734242X12465317.
  • Pellera, F. M.; Gidarakos, E. Effect of Dried Olive Pomace–derived Biochar on the Mobility of Cadmium and Nickel in Soil. J. Environ. Chem. Eng. 2015. DOI: 10.1016/j.jece.2015.04.005.
  • Hmid, A.; Al Chami, Z.; Sillen, W.; De Vocht, A.; Vangronsveld, J. Olive Mill Waste Biochar: A Promising Soil Amendment for Metal Immobilization in Contaminated Soils. Environ. Sci. Pollut. Res. 2015, 22(2), 1444–1456. DOI: 10.1007/s11356-014-3467-6.
  • El Hanandeh, A.; Abu-Zurayk, R. A.; Hamadneh, I.; Al-Dujaili, A. H. Characterization of Biochar Prepared from Slow Pyrolysis of Jordanian Olive Oil Processing Solid Waste and Adsorption Efficiency of Hg2+ions in Aqueous Solutions. Water Sci. Technol. 2016, 74(8), 1899. DOI: 10.2166/wst.2016.378.
  • Couglin, R. W.; Ezra, F. S. Role of Surface Acidity in the Adsorption of Organic Pollutants on the Surface of Carbon. Environ. Sci. Technol. 1968, 2, 291–297. DOI: 10.1021/es60016a002.
  • Teng, H.; Hsieh, C. T. Liquid‐phase Adsorption of Phenol by Activated Carbons Prepared from Bituminous Coals with Different Oxygen Contents. Chem. Technol. Biot. 1999, 74(2), 123–130. DOI: 10.1002/(SICI)1097-4660(199902)74:2<123::AID-JCTB991>3.0.CO;2-5.
  • Dehmani, Y.; Alrashdi, A. A.; Lgaz, H.; Lamhasni, T.; Abouarnadasse, S.; Chung, I.-M. Removal of Phenol from Aqueous Solution by Adsorption onto Hematite (α-Fe2O3): Mechanism Exploration from Both Experimental and Theoretical Studies. Arabian J. Chem. 2020. DOI: 10.1016/j.arabjc.2020.03.026.
  • Yoon, S. U.; Mahanty, B.; Ha, H. M.; Kim, C. G. Phenol Adsorption on Surface-functionalized Iron Oxide Nanoparticles: Modeling of the Kinetics, Isotherm, and Mechanism. J. Nanopart. Res. 2016, 18(6), 170. DOI: 10.1007/s11051-016-3478-y.
  • Shin, W.-S.;. Adsorption Characteristics of Phenol and Heavy Metals on Biochar from Hizikia Fusiformis. Environ. Earth Sci. 2017, 76(22), 782. DOI: 10.1007/s12665-017-7125-4.
  • Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M. Adsorption of Phenolic Compounds by Activated Carbon—a Critical Review. Chemosphere. 2005, 58(8), 1049–1070. DOI: 10.1016/j.chemosphere.2004.09.067.
  • Li, H.; Mahyoub, S. A. A.; Liao, W.; Xia, S.; Zhao, H.; Guo, M.; Ma, P. Effect of Pyrolysis Temperature on Characteristics and Aromatic Contaminants Adsorption Behavior of Magnetic Biochar Derived from Pyrolysis Oil Distillation Residue. Bioresour. Technol. 2017, 223, 20–26. DOI: 10.1016/j.biortech.2016.10.033.
  • Tessmer, C. H.; Vidic, R. D.; Uranowski, L. J. Impact of Oxygen-Containing Surface Functional Groups on Activated Carbon Adsorption of Phenols. Environ. Sci. Technol. 1997, 31(7), 1872–1878. DOI: 10.1021/es960474r.
  • Boyd, G. E.; Schubert, J.; Adamson, A. W. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. I. Ion-exchange Equilibria1. J. Am. Chem. Soc. 1947, 69(11), 2818–2829. DOI: 10.1021/ja01203a064.
  • Suganya, S.;. Influence of Ultrasonic Waves on Preparation of Active Carbon from Coffee Waste for the Reclamation of Effluents Containing Cr(VI) Ions. J. Ind. Eng. Chem. 2018, 60, 418–430. DOI: 10.1016/j.jiec.2017.11.029.
  • Mohammed, N. A. S.; Abu-Zurayk, R. A.; Hamadneh, I.; Al-Dujaili, A. H. Phenol Adsorption on Biochar Prepared from the Pine Fruit Shells: Equilibrium, Kinetic and Thermodynamics Studies. J. Environ. Manage. 2018, 226, 377–385. DOI: 10.1016/j.jenvman.2018.08.033.
  • El Yamani, M.; Sakar, E. H.; Boussakouran, A.; Ghabbour, N.; Rharrabti, Y. Physicochemical and Microbiological Characterization of Olive Mill Wastewater (OMW) from Different Regions of Northern Morocco. Environ. Technol. 2019, 1–13. doi:10.1080/09593330.2019.1597926.
  • Ayoub, S.; Al-Absi, K.; Al-Shdiefat, S.; Al-Majali, D.; Hijazean, D. Effect of Olive Mill Wastewater Land-spreading on Soil Properties, Olive Tree Performance and Oil Quality. Sci. Hortic. 2014, 175, 160–166. DOI: 10.1016/j.scienta.2014.06.013.
  • Bawab, A. A.; Ghannam, N.; Abu-Mallouh, S.; Bozeya, A.; Abu-Zurayk, R. A.; Al-Ajlouni, Y. A.; Alshawawreh, F. A.; Odeh, F.; Abu-Dalo, M. A. Olive Mill Wastewater Treatment in Jordan: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 305, 012002. DOI: 10.1088/1757-899X/305/1/012002.
  • Kyzas, G. Z.; Deliyanni, E. A.; Lazaridis, N. K. Magnetic Modification of Microporous Carbon for Dye Adsorption. J. Colloid Interface Sci. 2014, 430, 166–173. DOI: 10.1016/j.jcis.2014.05.049.
  • El Hanandeh, A.;. Energy Recovery Alternatives for the Sustainable Management of Olive Oil Industry Waste in Australia: Life Cycle Assessment. J. Cleaner Prod. 2015, 91, 78–88. DOI: 10.1016/j.jclepro.2014.12.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.