247
Views
2
CrossRef citations to date
0
Altmetric
Extraction

Robust and non-fluorinated superhydrophobic meshes with controllable pore size for high-efficiency water-in-oil emulsion separation

, , &
Pages 1699-1709 | Received 30 Dec 2019, Accepted 09 Jul 2020, Published online: 25 Jul 2020

References

  • Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Science and Technology for Water Purification in the Coming Decades. Nature 2008, 452(7185), 301–310. DOI: 10.1038/nature06599.
  • Gossen, L. P.; Velichkina, L. M. Environmental Problems of the Oil-and-Gas Industry (Review). Pet. Chem. 2006, 46(2), 67–72. DOI: 10.1134/s0965544106020010.
  • Kintisch, E.;. Gulf Oil Spill. An Audacious Decision in Crisis Gets Cautious Praise. Science 2010, 329(5993), 735–736. DOI: 10.1126/science.329.5993.735.
  • Sohn, Y. H.; Kim, J.; Shin, K.; Chang, D.; Seo, Y.; Aman, Z. M.; May, E. F. Hydrate Plug Formation Risk with Varying Watercut and Inhibitor Concentrations. Chem. Eng. Sci. 2015, 126, 711–718. DOI: 10.1016/j.ces.2015.01.016.
  • Zhu, Y.; Wang, D.; Jiang, L.; Jin, J. Recent Progress in Developing Advanced Membranes for Emulsified Oil/Water Separation. NPG Asia Mater. 2014, 6(5), e101. DOI: 10.1038/am.2014.23.
  • Fragouli, D.; Athanassiou, A. Oil Spill Recovery: Graphene Heaters Absorb Faster. Nat. Nanotechnol. 2017, 12(5), 406–407. DOI: 10.1038/nnano.2017.63.
  • Jernelov, A.;. How to Defend against Future Oil Spills. Nature 2010, 466(7303), 182–183. DOI: 10.1038/466182a.
  • Pendergast, M. M.; Hoek, E. M. V. A Review of Water Treatment Membrane Nanotechnologies. Energy Environ. Sci. 2011, 4(6), 1946. DOI: 10.1039/c0ee00541j.
  • Liu, M.; Li, J.; Guo, Z. Polyaniline Coated Membranes forEffective Separation of Oil-in-Water Emulsions. J. Colloid. Interface. Sci. 2016, 467, 261–270. DOI: 10.1016/j.jcis.2016.01.024.
  • Huang, S.; Ras, R. H. A.; Tian, X. Antifouling Membranes for Oily Wastewater Treatment: Interplay between Wetting and Membrane Fouling. Curr. Opin. Colloid Interface Sci. 2018, 36, 90–109. DOI: 10.1016/j.cocis.2018.02.002.
  • Ahmad, N. A.; Goh, P. S.; Karim, Z. A.; Ismail, A. F. Thin Film Composite Membrane for Oily Waste Water Treatment: Recent Advances and Challenges. Membranes 2018, 8(4), 86. DOI: 10.3390/membranes8040086.
  • Xu, T.; Xu, L. P.; Zhang, X.; Wang, S. Bioinspired Superwettable Micropatterns for Biosensing. Chem. Soc. Rev. 2019, 48(12), 3153–3165. DOI: 10.1039/c8cs00915e.
  • Han, Z.; Feng, X.; Guo, Z.; Niu, S.; Ren, L. Flourishing Bioinspired Antifogging Materials with Superwettability: Progresses and Challenges. Adv. Mater. 2018, 30, 1704652. DOI: 10.1002/adma.201704652.
  • Liu, M.; Wang, S.; Jiang, L. Nature-inspired Superwettability Systems. Nat. Rev. Mater. 2017, 2(7), 17036. DOI: 10.1038/natrevmats.2017.36.
  • Ge, J.; Shi, L. A.; Wang, Y. C.; Zhao, H. Y.; Yao, H. B.; Zhu, Y. B.; Zhang, Y.; Zhu, H. W.; Wu, H. A.; Yu, S. H. Joule-heated Graphene-wrapped Sponge Enables Fast Clean-up of Viscous Crude-oil Spill. Nat. Nanotechnol. 2017, 12(5), 434–440. DOI: 10.1038/nnano.2017.33.
  • Yin, X.; Wang, Z.; Shen, Y.; Mu, P.; Zhu, G.; Li, J. Facile Fabrication of Superhydrophobic Copper Hydroxide Coated Mesh for Effective Separation of Water-in-oil Emulsions. Sep. Purif. Technol. 2020, 230, 115856. DOI: 10.1016/j.seppur.2019.115856.
  • Liu, M.; Hou, Y.; Li, J.; Tie, L.; Peng, Y.; Guo, Z. Inorganic Adhesives for Robust, Self-healing, Superhydrophobic Surfaces. J. Mater. Chem. A. 2017, 5(36), 19297–19305. DOI: 10.1039/c7ta06001g.
  • Liu, M.; Li, J.; Hou, Y.; Guo, Z. Inorganic Adhesives for Robust Superwetting Surfaces. ACS Nano 2017, 11(1), 1113–1119. DOI: 10.1021/acsnano.6b08348.
  • Liu, X.; Zhou, J.; Xue, Z.; Gao, J.; Meng, J.; Wang, S.; Jiang, L. Clam’s Shell Inspired High-energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity. Adv. Mater. 2012, 24(25), 3401–3405. DOI: 10.1002/adma.201200797.
  • Su, M.; Liu, Y.; Li, S.; Fang, Z.; He, B.; Zhang, Y.; Li, Y.; He, P. A Rubber-like, Underwater Superoleophobic Hydrogel for Efficient Oil/water Separation. Chem. Eng. J. 2019, 361, 364–372. DOI: 10.1016/j.cej.2018.12.082.
  • Wei, Y.; Qi, H.; Gong, X.; Zhao, S. Specially Wettable Membranes for Oil-Water Separation. Adv. Mater. Interfaces 2018, 5(23), 1800576. DOI: 10.1002/admi.201800576.
  • Liu, W.; Cui, M.; Shen, Y.; Zhu, G.; Luo, L.; Li, M.; Li, J. Waste Cigarette Filter as Nanofibrous Membranes for on-Demand Immiscible Oil/Water Mixtures and Emulsions Separation. J. Colloid Interface Sci. 2019, 549, 114–122. DOI: 10.1016/j.jcis.2019.04.057.
  • Bu, X.; Chen, S.; Li, D.; Liu, J.; Hang, Z.; Zhang, Z.; Zhang, L. Flower-like Hollow MoS2 Microspheres/acrylic Resin Composites for Enhanced Oil Contaminants Removal from Water. Sep. Sci. Technol. 2019, 1–12. DOI: 10.1080/01496395.2019.1588319.
  • Li, J.; Wang, C.; Tang, Q.; Zhai, M.; Wang, Q.; Shi, M.; Li, X. Preparation and Application of Supported Demulsifier PPA@SiO2 for Oil Removal of Oil-in-water Emulsion. Sep. Sci. Technol. 2019, 1–12. DOI: 10.1080/01496395.2019.1634733.
  • Zeng, X.; Qian, L.; Yuan, X.; Zhou, C.; Li, Z.; Cheng, J.; Xu, S.; Wang, S.; Pi, P.; Wen, X. Inspired by Stenocara Beetles: From Water Collection to High-Efficiency Water-in-Oil Emulsion Separation. Acs Nano 2017, 11(1), 760–769. DOI: 10.1021/acsnano.6b07182.
  • Rius-Ayra, O.; Castellote-Alvarez, R.; Escobar, A. M.; Llorca-Isern, N. Robust and Superhydrophobic Coating Highly Resistant to Wear and Efficient in Water/Oil Separation. Surf. Coat. Technol. 2019, 364, 330–340. DOI: 10.1016/j.surfcoat.2019.01.077.
  • Wang, H.; Huang, X.; Li, B.; Gao, J. Facile Preparation of Super-Hydrophobic Nanofibrous Membrane for Oil/Water Separation in a Harsh Environment. J. Mater. Sci. 2018, 53(14), 10111–10121. DOI: 10.1007/s10853-018-2312-6.
  • Feng, L.; Zhang, Z. Y.; Mai, Z. H.; Ma, Y. M.; Liu, B. Q.; Jiang, L.; Zhu, D. B. A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water. Angew. Chem. Int. Ed. 2004, 43(15), 2012–2014. DOI: 10.1002/anie.200353381.
  • Zhang, W.; Shi, Z.; Zhang, F.; Liu, X.; Jin, J.; Jiang, L. Superhydrophobic and Superoleophilic PVDF Membranes for Effective Separation of Water-in-Oil Emulsions with High Flux. Adv. Mater. 2013, 25(14), 2071–2076. DOI: 10.1002/adma.201204520.
  • Solomon, B. R.; Hyder, M. N.; Varanasi, K. K. Separating Oil-Water Nanoemulsions Using Flux-Enhanced Hierarchical Membranes. Sci. Rep. 2014, 4, 5504. DOI: 10.1038/srep05504.
  • Zhang, F.; Zhang, W. B.; Shi, Z.; Wang, D.; Jin, J.; Jiang, L. Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation. Adv. Mater. 2013, 25(30), 4192–4198. DOI: 10.1002/adma.201301480.
  • Cao, Y.; Chen, Y.; Liu, N.; Lin, X.; Feng, L.; Wei, Y. Mussel-inspired Chemistry and Stöber Method for Highly Stabilized Water-in-oil Emulsions Separation. J. Mater. Chem. A. 2014, 2(48), 20439–20443. DOI: 10.1039/c4ta05075d.
  • Wang, M.; Liu, G.; Yu, H.; Lee, S. H.; Wang, L.; Zheng, J.; Wang, T.; Yun, Y.; Lee, J. K. ZnO Nanorod Array Modified PVDF Membrane with Superhydrophobic Surface for Vacuum Membrane Distillation Application. ACS Appl. Mater. Interfaces 2018. DOI: 10.1021/acsami.8b00271.
  • Li, K.; Ju, J.; Xue, Z.; Ma, J.; Feng, L.; Gao, S.; Jiang, L. Structured Cone Arrays for Continuous and Effective Collection of Micron-Sized Oil Droplets from Water. Nat. Commun. 2013, 4, 2276. DOI: 10.1038/ncomms3276.
  • Cai, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A Facile Method to Fabricate A Double-Layer Stainless Steel Mesh for Effective Separation of Water-in-oil Emulsions with High Flux. J. Mater. Chem. A. 2016, 4(48), 18815–18821. DOI: 10.1039/c6ta08168a.
  • Lin, X.; Heo, J.; Jeong, H.; Choi, M.; Chang, M.; Hong, J. Robust Superhydrophobic Carbon Nanofiber Network Inlay-Gated Mesh for Water-in-Oil Emulsion Separation with High Flux. J. Mater. Chem. A. 2016, 4(46), 17970–17980. DOI: 10.1039/c6ta07578a.
  • Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Maximizing the Right Stuff: The Trade-off between Membrane Permeability and Selectivity. Science 2017, 356(6343), eaab0530. DOI: 10.1126/science.aab0530.
  • Wen, Q.; Guo, F.; Yang, F.; Guo, Z. Green Fabrication of Coloured Superhydrophobic Paper from Native Cotton Cellulose. J. Colloid Interface Sci. 2017, 497, 284–289. DOI: 10.1016/j.jcis.2017.03.036.
  • Wenzel, R. N.;. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. Anal. Ed. 1936, 28(8), 988–994. DOI: 10.1021/ie50320a024.
  • Verho, T.; Bower, C.; Andrew, P.; Franssila, S.; Ikkala, O.; Ras, R. H. Mechanically Durable Superhydrophobic Surfaces. Adv. Mater. 2011, 23(5), 673–678. DOI: 10.1002/adma.201003129.
  • Tian, X.; Verho, T.; Ras, R. H. A. Moving Superhydrophobic Surfaces toward Real-World Applications. Science 2016, 352(6282), 142–143. DOI: 10.1126/science.aaf2073.
  • Bodas, D.; Khan-Malek, C. Hydrophilization and Hydrophobic Recovery of PDMS by Oxygen Plasma and Chemical Treatment—An SEM Investigation. Sens. Actuators B 2007, 123(1), 368–373. DOI: 10.1016/j.snb.2006.08.037.
  • Wang, H.; Xue, Y.; Ding, J.; Feng, L.; Wang, X.; Lin, T. Durable, Self-Healing Superhydrophobic and Superoleophobic Surfaces from Fluorinated-Decyl Polyhedral Oligomeric Silsesquioxane and Hydrolyzed Hluorinated Alkyl Silane. Angew. Chem. Int. Ed. Engl. 2011, 50(48), 11433–11436. DOI: 10.1002/anie.201105069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.