123
Views
2
CrossRef citations to date
0
Altmetric
Ion Exchange

Aconitic acid recovery from sugar-cane stillage: From the modeling of the anion-exchange step to the conception of a novel combined process

, , , , ORCID Icon & ORCID Icon
Pages 1752-1768 | Received 12 Feb 2020, Accepted 07 Jul 2020, Published online: 27 Jul 2020

References

  • Caderby, E.; Baumberger, S.; Hoareau, W.; Fargues, C.; Decloux, M.; Maillard, M. N. Sugar Cane Stillage: A Potential Source of Natural Antioxidants. J. Agric. Food Chem. 2013, 61(47), 11494. DOI: 10.1021/jf4039474.
  • Zapata, N. J. G.;. Aconitic Acid from Sugarcane: Production and Industrial Application; Louisiana State University: USA, Baton Rouge, 2007.
  • Blinco, J. A. L.; Doherty, W. O. S. (2005). Review of Extraction Technologies for Organic Acid Production. In 27th Australian Society of Sugarcane Technology Conference. Queensland, Australia.
  • de Oliveira, D. P.; Augusto, G. G.; Batista, N. V.; de Oliveira, V. L. S.; Ferreira, D. S.; Souza, M.; Fernandes, C.; Amaral, F. A.; Teixeira, M. M.; de Padua, R. M.; et al. Encapsulation of Trans-aconitic Acid in Mucoadhesive Microspheres Prolongs the Anti-inflammatory Effect in LPS-induced Acute Arthritis. Eur. J. Pharm. Sci. 2018, 119, 112. DOI: 10.1016/j.ejps.2018.04.010.
  • Fang, X. B.; Zhang, J. M.; Xie, X.; Liu, D.; He, C. W.; Wan, J. B.; Chen, M. W. pH-sensitive Micelles Based on Acid-labile Pluronic F68-curcumin Conjugates for Improved Tumor Intracellular Drug Delivery. Int. J. Pharmaceutics. 2016, 502(1–2), 28. DOI: 10.1016/j.ijpharm.2016.01.029.
  • Voll, E.; Gazziero, D. L. P.; Adegas, F. S. Aconitic Acid on Seeds of Weed Species from Different Locations. Planta Daninha. 2010, 28(1), 13. DOI: 10.1590/S0100-83582010000100002.
  • Kanitkar, A.; Smoak, M.; Chen, C.; Aita, G.; Scherr, T.; Madsen, L.; Hayes, D. Synthesis of Novel Polyesters for Potential Applications in Skin Tissue Engineering. J. Chem. Technol. Biotechnol. 2016, 91(3), 733. DOI: 10.1002/jctb.4638.
  • Saeed, H. A. M.; Eltahir, Y. A.; Xia, Y. M.; Wang, Y. M. Synthesis and Characterization of Aliphatic-aromatic Hyperbranched Polyesters with High Organosolubility. Russ. J. Appl. Chem. 2014, 87(10), 1481. DOI: 10.1134/S1070427214100140.
  • Joo, Y. C.; You, S. K.; Shin, S. K.; Ko, Y. J.; Jung, K. H.; Sim, S. A.; Han, S. O. Bio-Based Production of Dimethyl Itaconate from Rice Wine Waste-Derived Itaconic Acid. Biotechnol. J. 2017, 12(11), 1. DOI: 10.1002/biot.201700114.
  • Xie, X. N.; Xu, S. P.; Pi, P. H.; Cheng, J.; Wen, X. F.; Liu, X.; Wang, S. N. Dissipative Particle Dynamic Simulation on the Assembly and Release of siRNA/Polymer/Gold Nanoparticles Based Polyplex. AIChE J. 2018, 64(3), 810. DOI: 10.1002/aic.15961.
  • Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass - Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas; U.S. Department of Energy: SW Washington, U.S., 2004; pp 76.
  • Cranston, H. A.;. Manufacture of Aconitic Acid; Daniel F Kelly: USA, 1951; Vols. US 2,566,172, pp 1.
  • Collier, D. W.;. Process of Treating Aconitic Acid Containing Plant Extracts; Corp, S., Ed.; Sharples Corp: USA, 1950; Vol. US 2,513,287, pp 1.
  • Kanitkar, A.; Aita, G.; Madsen, L. The Recovery of Polymerization Grade Aconitic Acid from Sugarcane Molasses. J. Chem. Technol. Biotechnol. 2013, 88(12), 2188. DOI: 10.1002/jctb.4084.
  • Malmary, G.; Albet, J.; Putranto, A.; Hanine, H.; Molinier, J. Recovery of Aconitic and Lactic Acids from Simulated Aqueous Effluents of the Sugar-cane Industry through Liquid-liquid Extraction. J. Chem. Technol. Biotechnol. 2000, 75(12), 1169. DOI: 10.1002/1097-4660(200012)75:12<1169::AID-JCTB334>3.0.CO;2-F.
  • Dupoiron, S.; Lameloise, M. L.; Bedu, M.; Lewandowski, R.; Fargues, C.; Allais, F.; Teixeira, A. R. S.; Rakotoarivonina, H.; Remond, C. Recovering Ferulic Acid from Wheat Bran Enzymatic Hydrolysate by a Novel and Non-thermal Process Associating Weak Anion-exchange and Electrodialysis. Sep. Purif. Technol. 2018, 200, 75. DOI: 10.1016/j.seppur.2018.02.031.
  • Kuang, P. Q.; Liang, H.; Yuan, Q. P. Isolation and Purification of Glucoraphenin from Radish Seeds by Low-Pressure Column Chromatography and Nanofiltration. Sep. Sci. Technol. 2010, 46(1), 179. DOI: 10.1080/01496395.2010.483446.
  • Fargues, C.; Lewandowski, R.; Lameloise, M.-L. Evaluation of Ion-exchange and Adsorbent Resins for the Detoxification of Beet Distillery Effluents. Ind. Eng. Chem. Res. 2010, 49(19), 9248. DOI: 10.1021/ie100330y.
  • Bailly, A.; Roux-de Balmann, H.; Aimar, P.; Lutin, F.; Cheryan, M. Production Processes of Fermented Organic Acids Targeted around Membrane Operations: Design of the Concentration Step by Conventional Electrodialysis. J. Membr. Sci. 2001, 191(1–2), 129. DOI: 10.1016/S0376-7388(01)00459-8.
  • Blanc, C.-L.; Theoleyre, M.-A.; Lutin, F.; Pareau, D.; Stambouli, M. Purification of Organic Acids by Chromatography: Adsorption Isotherms and Impact of Elution Flow. Sep. Purif. Technol. 2015, 141, 105. DOI: 10.1016/j.seppur.2014.11.032.
  • Joglekar, H. G.; Rahman, I.; Babu, S.; Kulkarni, B. D.; Joshi, A. Comparative Assessment of Downstream Processing Options for Lactic Acid. Sep. Purif. Technol. 2006, 52(1), 1. DOI: 10.1016/j.seppur.2006.03.015.
  • Moldes, A. B.; Alonso, J. L.; Parajo, J. C. Recovery of Lactic Acid from Simultaneous Saccharification and Fermentation Media Using Anion Exchange Resins. Bioprocess Biosyst. Eng. 2003, 25(6), 357. DOI: 10.1007/s00449-002-0316-7.
  • Sun, X.; Lu, H.; Wang, J. Recovery of Citric Acid from Fermented Liquid by Bipolar Membrane Electrodialysis. J. Cleaner Prod. 2017, 143, 250. DOI: 10.1016/j.jclepro.2016.12.118.
  • Lee, H. D.; Lee, M. Y.; Hwang, Y. S.; Cho, Y. H.; Kim, H. W.; Park, H. B. Separation and Purification of Lactic Acid from Fermentation Broth Using Membrane-Integrated Separation Processes. Ind. Eng. Chem. Res. 2017, 56(29), 8301. DOI: 10.1021/acs.iecr.7b02011.
  • Luongo, V.; Palma, A.; Rene, E. R.; Fontana, A.; Pirozzi, F.; Esposito, G.; Lens, P. N. L. Lactic Acid Recovery from a Model of Thermotoga Neapolitana Fermentation Broth Using Ion Exchange Resins in Batch and Fixed-bed Reactors. Sep. Sci. Technol. 2019, 54(6), 1008. DOI: 10.1080/01496395.2018.1520727.
  • Hanine, H.; Mourgues, J.; Conte, T.; Malmary, G.; Molinier, J. Recovery of Calcium Aconitate from Effluents from Cane Sugar Production with Ion-Exchange Resins. Bioresour. Technol. 1992, 39(3), 221. DOI: 10.1016/0960-8524(92)90210-O.
  • Saska, M.; Zapata, N. G. Some Observations on Feasibility of Recovering Aconitic Acid from Low Purity Sugarcane Liquors. Int Sugar J. 2006, 108(1288), 203.
  • CERF. Projet V2ARUN - Valorisation d’un coproduit de la canne à sucre: L’acide aconitique. In Compte-rendu du comité de pilotage –(CRCP4); CERF: La Réunion, France, 2009.
  • Petit, A.; Wut-Tiu-Yen, J.; Pislor, E.; Pontalier, P.-Y.; Albet, J.; Hoareau, W.; Corcodel, L. Procédé D’extraction De L’acide Aconitique À Partir De Produits Issus De L’industrie De La Canne À Sucre; Ercane, I. N. P. D. T. I., Ed..; Université de la Réunion: France; Vol. EP2921471A1, 2015.
  • Pislor, E.;. Extraction D’un Acide Organique À Partir De Co-produits Issus De L’industrie De La Canne À Sucre; INP Toulouse: France, Toulouse, France, 2011.
  • Huang, C. H.; Xu, T. W.; Zhang, Y. P.; Xue, Y. H.; Chen, G. W. Application of Electrodialysis to the Production of Organic Acids: State-of-the-art and Recent Developments. J. Membr. Sci. 2007, 288(1–2), 1. DOI: 10.1016/j.memsci.2006.11.026.
  • Montiel, V.; Garcia-Garcia, V.; Gonzalez-Garcia, J.; Carmona, F.; Aldaz, A. Recovery by Means of Electrodialysis of an Aromatic Amino Acid from a Solution with a High Concentration of Sulphates and Phosphates. J. Membr. Sci. 1998, 140(2), 243. DOI: 10.1016/S0376-7388(97)00275-5.
  • Sata, T.;. Studies on Anion Exchange Membranes Having Permselectivity for Specific Anions in Electrodialysis - Effect of Hydrophilicity of Anion Exchange Membranes on Permselectivity of Anions. J. Membr. Sci. 2000, 167(1), 1. DOI: 10.1016/S0376-7388(99)00277-X.
  • Dorfner, K.;. Ion Exchangers; Walter de Gruyter: Berlin, New York, 1991.
  • Wu-Tiu-Yen, J.;. Valorisation de la vinasse de canne à sucre: étude d’un procédé d’extraction d’un acide organique multivalent; Paris-Saclay University: Massy, France, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.