229
Views
8
CrossRef citations to date
0
Altmetric
Electrocoagulation

Effectiveness of electrocoagulation and chemical coagulation methods on paper industry wastewaters and optimum operating parameters

&
Pages 2074-2086 | Received 31 Jul 2019, Accepted 29 Jul 2020, Published online: 11 Aug 2020

References

  • Toczylowska-Maminska, R. Limits and Perspectives of Pulp and Paper Industry Wastewater Treatment-A Review. Renew. Sust. Energ. Rev. 2017, 78, 764–772. DOI: 10.1016/j.rser.2017.05.021.
  • Mongkhonsiri, G.; Gani, R.; Malakul, P.; Assabumrungrat, S. Integration of the Biorefinery Concept for the Development of Sustainable Processes for Pulp and Paper Industry. Comput. Chem. Eng. 2018, 119, 1–15. DOI: 10.1016/j.compchemeng.2018.07.019.
  • Abedinzadeh, N.; Shariat, M.; Monavari, S. M. Evaluation of Color and Cod Removal by Fenton from Biologically (SBR) Pre-Treated Pupl and Paper Wastewater. Process Saf. Environ. Prot. 2018, 116, 82–91. DOI: 10.1016/j.psep.2018.01.015.
  • Sun, M.; Wang, Y.; Shi, L.; Klemes, J. J. Uncovering Energy Use, Carbon Emissions and Environmental Burdens of Pulp and Paper Industry: A Systematic Review and Meta-Analysis. Renew. Sust. Energ. Rev. 2018, 92, 823–833. DOI: 10.1016/j.rser.2018.04.036.
  • Pokhrel, D.; Viraraghavan, T. Treatment of Pulp and Paper Mill Wastewater-A Review. Sci. Total Environ. 2004, 333, 37–58. DOI: 10.1016/j.scitotenv.2004.05.017.
  • Gavrilescu, D.; Puitel, A. C.; Dutuc, G.; Cracium, G. Environmantal Impact of Pulp and Papaer Mills. Environ. Eng. Manage. J. 2012, 11(1), 81–85. DOI: 10.30638/eemj.2012.012.
  • Thompson, G.; Swain, J.; Kay, M.; Forster, C. F. The Treatment of Pulp and Paper Mill Effluent: A Review. Bioresour. Technol. 2001, 77, 275–286. DOI: 10.1016/S0960-8524(00)00060-2.
  • Villanueva, A.; Eder, P. (2011) End of Waste Criteria for Waste Paper: Technical Proposals. JRC Scientific and Technical Reports, Seville, Spain, pp 11–13.
  • Vashi, H.; Terna Iorhemen, O.; Hwa Tay, J. Aerobic Granulation: A Recent Development on the Biological Treatment of Pulp and Paper Wastewater. Environ. Technol. Innovations. 2018, 9, 265–274. DOI: 10.1016/j.eti.2017.12.006.
  • Zhuang, H.; Guo, J.; Hong, X. Advanced Treatment of Paper-Making Wastewater Using Catalytic Ozonation with Waste Rice Straw-Derived Activated Carbon-Supported Manganese Oxides as A Novel and Efficient Catalyst. Pol. J. Environ. Stud. 2018, 27(1), 451–457. DOI: 10.15244/pjoes/74483.
  • Khansorthonga, S.; Hunsom, M. Remediation of Wastewater from Pulp and Paper Mill Industry by the Electrochemical Technique. Chem. Eng. J. 2009, 151, 228–234. DOI: 10.1016/j.cej.2009.02.038.
  • Moradnia, M.; Panahifard, M.; Dindarlo, K.; Jamali, H. A. Optimizing Potassium Ferrate for Textile Wastewater Treatment by RSM. Environ. Health Eng. Manage. J. 2016, 3(3), 137–142. DOI: 10.15171/EHEM.2016.12.
  • Standard Methods. Standard Methods for the Examination of Water and Wastewater, 19th ed.; APHA, AWWA, WPCF: Washington, DC, 1995.
  • Aouni, A.; Fersi, C.; Cuartes-Uribe, B.; Bes-Pia, A.; Alcaina-Miranda, M. I.; Dhabbi, M. Reactive Dyes Rejection and Textile Effluent Treatment Study Using Ultrafiltration and Nanofiltration Processes. Desalination. 2012, 297, 87–96. DOI: 10.1016/j.desal.2012.04.022.
  • Yılmaz, A. E.; Boncukoğlu, R.; Kocakerim, M. M. A Quantitative Comparison between Electrocoagulation and Chemical Coagulation for Boron Removal from Boron-Containing Solution. J. Hazard. Mater. 2007, 149, 475–481. DOI: 10.1016/j.jhazmat.2007.04.018.
  • Trompette, J. L.; Vergnes, H. On the Crucial Influence of Some Supporting Electrolytes during Electrocoagulation in the Presence of Aluminum Electrodes. J. Hazard. Mater. 2009, 163, 1282–1288. DOI: 10.1016/j.jhazmat.2008.07.148.
  • Al Jabari, F. Y. Studies of Autocatalytic Electrocoagulation Reactor for Lead Removal from Simulated Wastewater. J. Environ. Chem. Eng. 2018, 6, 6069–6078. DOI: 10.1016/j.jece.2018.09.032.
  • Changmai, M.; Pasawan, M.; Purkait, M. K. Treatment of Oily Wastewater from Drilling Site Using Electrocoagulation Followed by Microfiltration. Sep. Purif. Technol. 2019, 210, 463–472. DOI: 10.1016/j.seppur.2018.08.007.
  • Nawarkar, C. J.; Salkar, V. D. Solar Powered Electrocoagulation System for Municipal Wastewater Treatment. Fuel. 2019, 237, 222–226. DOI: 10.1016/j.fuel.2018.09.140.
  • Kumar, A.; Nidheesh, P. V.; Kumar, M. S. Composite Wastewater Treatment by Aerated Electrocoagulation and Modified Peroxi-Coagulation Processes. Chemosphere. 2018, 205, 587–593. DOI: 10.1016/j.chemosphere.2018.04.141.
  • Maitlo, H. A.; Kim, J. H.; An, B. M.; Park, J. Y. Effects of Supporting Electrolytes in Treatment of Arsenate-Containing Wastewater with Power Generation by Aluminumair Fuel Cell Electrocoagulation. J. Ind. Eng. Chem. 2018, 57, 254–262. DOI: 10.1016/j.jiec.2017.08.031.
  • Öztürk, T.; Veli, S.; Dimoglo, A. The Effect of Seawater Conductivity on the Treatment of Leachate by Electrocoagulation. Chem. Biochem. Eng. 2013, 27(3), 347–354.
  • Bazrafshan, E.; Alipour, A. R.; Mahvi, A. H. Textile Wastewater Treatment by Application of Combined Chemical Coagulation, and Adsorption Process. Desalination Water Treat. 2015, 1–13. DOI: 10.1080/19443994.2015.1027960.
  • Al-Qodah, Z.; Al-Shannag, M. Heavy Metal Ions Removal from Wastewater Using Electrocoagulation Processes: A Comprehensive Review. Sep. Sci. Technol. 2017, 52(17), 2649–2676. DOI: 10.1080/01496395.2017.1373677.
  • Yılmaz Nayır, T.; Kara, S. Container Washing Wastewater Treatment by Combined Electrocoagulation-Electrooxidation. Sep. Sci. Technol. 2018, 53(10), 1592–1603. DOI: 10.1080/01496395.2017.1411365.
  • Nasrullah, M.; Zularisam, A. W.; Krishnan, S.; Sakinah, M.; Singh, L.; Fen, Y. W. High Performance Electrocoagulation Process in Treating Palm Oil Mill Effluent Using High Current Intensity Application. Chin. J. Chem. Eng. 2019, 27, 208–217. DOI: 10.1016/j.cjche.2018.07.021.
  • Emamjomeh, M. M.; Jamali, H. A.; Moradnia, M. Optimizing of Nitrate Removal Efficiency and Energy Consumption Using a Batch Monopolar Electrocoagulation: Prediction by RSM Method. J. Environ. Eng. 2017, 143(7). DOI: 10.1061/(ASCE)EE.1943-7870.0001210.
  • Chen, F.; Li, X.; Luo, Z.; Ma, J.; Zhu, Q.; Zhang, S. Advanced Treatment of Copper Smelting Wastewater by the Combination of Internal Micro-Electrolysis and Electrocoagulation. Sep. Sci. Technol. 2018, 53(16), 2639–2646. DOI: 10.1080/01496395.2018.1463265.
  • Khan, S. U.; Islam, D. T.; Farooqi, I. H.; Ayub, S.; Basheer, F. Hexavalent Chromium Removal in an Electrocoagulation Column Reactor: Process Optimization Using CCD, Adsorption Kinetics and pH Modulated Sludge Formation. Process Saf. Environ. Prot. 2019, 122, 118–130. DOI: 10.1016/j.psep.2018.11.024.
  • Sravanth, T.; Ramesh, S. T.; Gandhimathi, R.; Nidheesh, P. V. Continuous Treatability of Oily Wastewater from Locomotive Wash Facilities by Eelectrocoagulation. Sep. Sci. Technol. 2020, 55(3), 583–589. DOI: 10.1080/01496395.2019.1567548.
  • Parama Kalyani, K. S.; Balasubramanian, N.; Srinivasakannan, C. Decolorization and COD Reduction of Paper Industrial Effluent Using Electro-Coagulation. Chem. Eng. J. 2009, 151, 97–104. DOI: 10.1016/j.cej.2009.01.050.
  • Soloman, P. A.; Ahmet Basha, C.; Velan, M.; Balasubramanian, N.; Marimuthu, P. Augmentation of Biodegradability of Pulp and Paper Industry Wastewater by Electrochemical Pre-Treatment and Optimization by RSM. Sep. Purif. Technol. 2009, 69, 109–117. DOI: 10.1016/j.seppur.2009.07.002.
  • Bazrafshan, E.; Mostafapour, F. K.; Farzadkia, M.; Ownagh, K. A.; Mahvi, A. H. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process. PloS One. 2012, 7(6). DOI: 10.1371/journal.pone.0040108.
  • Darvishmotevalli, M.; Zarei, A.; Moradnia, M.; Noorisepehr, M.; Mohammadi, H. Optimizing of Saline Wastewater Treatment Usig Electrochemical Oxidation Process: Prediction by RSM Method. MethodsX. 2019, 6, 1101–1113. DOI: 10.1016/j.mex.2019.03.015.
  • Bazrafshan, E.; Ownagh, K. A.; Mahvi, A. M. Appication of Electrocoagulation Process Using Iron and Aluminum Electrodes for Flouride Remocal from Aqueous Environment. J. Chem. 2012, 9(4), 2297–2308. DOI: 10.1155/2012/102629.
  • Bazrafshan, E.; Mahvi, A. H.; Nasseri, S.; Shaieghi, M. Performance Evaluation of Electrocoagulation Process for Diazinon Removal from Aqueous Environments by Using Iron Electrodes. Iran. J. Environ. Health Sci. Eng. 2007, 4(2), 127–132.
  • Bazrafshan, E.; Mohammadi, L.; Anasari-Moghaddam, A.; Mahvi, A. M. Heavy Metals Removal from Aqueous Environments by Electrocoagulation Process- A Systematic Review. J. Environ. Health Sci. Eng. 2015, 13(74), 1–16. DOI: 10.1186/s440201-015-0233-8.
  • Izquierdo, C. J.; Canizares, P.; Rodrigo, M. A.; Leclerc, J. P.; Valentin, G.; Lapicque, F. Effect of the Nature of the Supporting Electrolyte on the Treatment of Soluble Oils by Electrocoagulation. Desalination. 2010, 255, 1–20. DOI: 10.1016/j.desal.2010.01.022.
  • Song, S.; He, Z.; Qiu, J.; Xu, L.; Chen, J. Ozone Assisted Electrocoagulation for Decolorization of C.I. Reactive Black 5 in Aqueous Solution: An Investigation of the Effect of Operational Parameters. Sep. Purif. Technol. 2007, 55, 238–245. DOI: 10.1016/j.seppur.2006.12.013.
  • Xu, L.; Cao, G.;.; Xu, X.; Liu, S.; Duan, Z.; He, C.; Wang, Y.; Huang, Q. Simultaneous Removal of Cadmium, Zinc an Manganese Using Electrocoagulation: Influence of Operating Parameters and Electrolyte Nature. J. Environ. Manage. 2017, 204, 394–403. DOI: 10.1016/j.jenvman.2017.09.020.
  • Wei, N.; Zhang, Z.; Liu, D.; Wu, Y.; Wang, J.; Wang, Q. Coagulation Behaviour of Polyaluminum Chloride: Effects of pH and Coagulant Dosage. Chin. J. Chem. Eng. 2015, 23, 1041–1046. DOI: 10.1016/j.cjche.2015.02.003.
  • Gilpavas, E.; Dobrosz-Gomez, I.; Gomez-Garcia, M. A. Optimization of Sequential Chemical Coagulation-Electro-Oxidation Process for the Treatment of an Industrial Textile Wastewater. J. Water Process. Eng. 2018, 22, 73–79. DOI: 10.1016/j.jwpe.2018.01.005.
  • Jamali, H. A.; Moradnia, M. Optimizing Functions of Coagulants in Treatment of Wastewater from Metalworking Fluids: Prediction by RSM Method. Environ. Health Eng. Manage. J. 2018, 5(1), 15–21. DOI: 10.15171/EHEM.2018.03.
  • Ozbey-Unal, B.; Balcik-Canbolat, C.; Dizge, N.; Keskinler, B. Treatability Studies on Optimizing Coagulant Type and Dosage in Combined Coagulation/Membrane Processes for Table Olive Processing Wastewater. J. Water Process. Eng. 2018, 26, 301–307. DOI: 10.1016/j.jwpe.2018.10.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.