373
Views
5
CrossRef citations to date
0
Altmetric
Adsorption

Role of adsorption during nanofiltration of sulfamethoxazole and azithromycin solution

, , , , &
Pages 1996-2010 | Received 23 May 2020, Accepted 01 Aug 2020, Published online: 18 Aug 2020

References

  • Marti, E.; Variatza, E.; Balcazar, J. L. The Role of Aquatic Ecosystems as Reservoirs of Antibiotic Resistance. Trends Microbiol. 2014, 1(22), 36–41. DOI: 10.1016/j.tim.2013.11.001.
  • Kumar, A.; Kumar, A.; Sharma, G.; Al-Muhtaseb, A. H.; Naushad, M.; Ghfar, A. A.; Stadler, F. J. Quaternary Magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 Nano-junction for Visible Light and Solar Powered Degradation of Sulfamethoxazole from Aqueous Environment. Chem. Eng. J. 2018, 334, 462–478. DOI: 10.1016/j.cej.2017.10.049.
  • Baran, W.; Adamek, E.; Nska, J. Z.; Sobczak, A. Effects of the Presence of Sulfonamides in the Environment and Their Influence on Human Health. J. Hazard. Mater. 2011, 196, 1–15. DOI: 10.1016/j.jhazmat.2011.08.082.
  • Saita, M. G.; Aleo, D.; Melilli, B.; Mangiafico, S.; Cro, M.; Sanfilippo, C.; Patti, A. pH-Dependent Stability of Azithromycin in Aqueous Solution and Structure Identification of Two New Degradation Products. J. Pharm. Biomed. Anal. 2018, 158, 47–53. DOI: 10.1016/j.jpba.2018.05.042.
  • Danner, M.-C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic Pollution in Surface Fresh Waters: Occurrence and Effects. Sci. Total Environ. 2019, 664, 793–804. DOI: 10.1016/j.scitotenv.2019.01.406.
  • Sakai, N.; Yusof, R.; Sapar, M.; Yoneda, M.; Mohd, M. A. Spatial Analysis and Source Profiling of Beta-agonists and Sulfonamides in Langat River Basin, Malaysia. Sci. Total Environ. 2016, 548-549, 43–50. DOI: 10.1016/j.scitotenv.2016.01.040.
  • Archundia, D.; Duwig, C.; Lehembre, F.; Chiron, S.; Morel, M.-C.; Prado, B.; Bourdat-Deschamps, M.; Vince, E.; Aviles, G. F.; Martins, J. M. F. Antibiotic Pollution in the Katari Subcatchment of the Titicaca Lake: Major Transformation Products and Occurrence of Resistance Genes. Sci. Total Environ. 2017, 576, 671–682. DOI: 10.1016/j.scitotenv.2016.10.129.
  • Jiang, L.; Hu, X.; Yin, D.; Zhang, H.; Yu, Z. Occurrence, Distribution and Seasonal Variation of Antibiotics in the Huangpu River, Shanghai, China. Chemosphere. 2011, 82(6), 822–828. DOI: 10.1016/j.chemosphere.2010.11.028.
  • Lye, Y. L.; Bong, C. W.; Lee, C. W.; Zhang, R. J.; Zhang, G.; Suzuki, S.; Chai, L. C. Anthropogenic Impacts on Sulfonamide Residues and Sulfonamide Resistant Bacteria and Genes in Larut and Sangga Besar River, Perak. Sci. Total Environ. 2019, 688, 1335–1347. DOI: 10.1016/j.scitotenv.2019.06.304.
  • Cano, P. A.; Jaramillo-Baquero, M.; Zúñiga-Benítez, H.; Londoño, Y. A.; Peñuela, G. A. Use of Simulated Sunlight Radiation and Hydrogen Peroxide in Azithromycin Removal from Aqueous Solutions: Optimization & Mineralization Analysis. Emerging Contam. 2020, 6, 53–61. DOI: 10.1016/j.emcon.2019.12.004.
  • Sayadi, M. H.; Sobhani, S.; Shekari, H. Photocatalytic Degradation of Azithromycin Using GO@Fe3O4/ZnO/SnO2 Nanocomposites. J. Clean. Produc. 2019, 232, 127–136. DOI: 10.1016/j.jclepro.2019.05.338.
  • Dan, A.; Zhang, X.; Dai, Y.; Chen, C.; Yang, Y. Occurrence and Removal of Quinolone, Tetracycline, and Macrolide Antibiotics from Urban Wastewater in Constructed Wetlands. J. Clean. Produc. 2020, 252, 119677. DOI: 10.1016/j.jclepro.2019.119677.
  • Garoma, T.; Umamaheshwar, S. K.; Mumper, A. Removal of Sulfadiazine, Sulfamethizole, Sulfamethoxazole, and Sulfathiazole from Aqueous Solution by Ozonation. Chemosphere. 2010, 79(8), 814–820. DOI: 10.1016/j.chemosphere.2010.02.060.
  • de Amorim, K. P.; Romualdo, L. L.; Andrade, L. S. Electrochemical Degradation of Sulfamethoxazole and Trimethoprim at Boron-doped Diamond Electrode: Performance, Kinetics and Reaction Pathway. Sep. Purif. Technol. 2013, 120, 319–327. DOI: 10.1016/j.seppur.2013.10.010.
  • Shimabuku, K. K.; Kearns, J. P.; Martinez, J. E.; Mahoney, R. B.; Moreno-Vasquez, L.; Summers, R. S. Biochar Sorbents for Sulfamethoxazole Removal from Surface Water, Stormwater, and Wastewater Effluent. Water Res. 2016, 96, 236–245. DOI: 10.1016/j.watres.2016.03.049.
  • Choi, K.-J.; Kim, S.-G.; Kimb, S.-H. Removal of Antibiotics by Coagulation and Granular Activated Carbon Filtration. J. Hazard. Mater. 2008, 151(1), 38–43. DOI: 10.1016/j.jhazmat.2007.05.059.
  • Cao, X.-L.; Yan, Y.-N.; Zhou, F.-Y.; Sun, S.-P. Tailoring Nanofiltration Membranes for Effective Removing Dye Intermediates in Complex Dye-wastewater. J. Membr. Sci. 2020, 595, 117476. DOI: 10.1016/j.memsci.2019.117476.
  • Garcia-Ivars, J.; Martella, L.; Massella, M.; Carbonell-Alcaina, C.; Alcaina-Miranda, M.-I.; Iborra-Clar, M.-I. Nanofiltration as Tertiary Treatment Method for Removing Trace Pharmaceutically Active Compounds in Wastewater from Wastewater Treatment Plants. Water Res. 2017, 125, 360–373. DOI: 10.1016/j.watres.2017.08.070.
  • Semião, A. J. C.; Schäfer, A. I. Estrogenic Micropollutant Adsorption Dynamics onto Nanofiltration Membranes. J. Membr. Sci. 2011, 381(1–2), 132–141. DOI: 10.1016/j.memsci.2011.07.031.
  • Her, N.; Amy, G.; Chung, J.; Yoon, J.; Yoon, Y. Characterizing Dissolved Organic Matter and Evaluating Associated Nanofiltration Membrane Fouling. Chemosphere. 2008, 70(3), 495–502. DOI: 10.1016/j.chemosphere.2007.06.025.
  • Fujioka, T.; Khan, S. J.; McDonald, J. A.; Henderson, R. K.; Poussade, Y.; Drewes, J. E.; Nghiem, L. D. Effects of Membrane Fouling on N-nitrosamine Rejection by Nanofiltration and Reverse Osmosis Membranes. J.Membr. Sci. 2013, 427, 311–319. DOI: 10.1016/j.memsci.2012.09.055.
  • Madaeni, S. S.; Salehi, E. Adsorption of Cations on Nanofiltration Membrane: Separation Mechanism, Isotherm Confirmation and Thermodynamic Analysis. Chem. Eng. J. 2009, 150(1), 114–121. DOI: 10.1016/j.cej.2008.12.005.
  • He, J.; Li, Y.; Cai, X.; Chen, K.; Zheng, H.; Wang, C.; Zhang, K.; Lin, D.; Kong, L.; Liu, J. Study on the Removal of Organic Micropollutants from Aqueous and Ethanol Solutions by HAP Membranes with Tunable Hydrophilicity and Hydrophobicity. Chemosphere. 2017, 174, 380–389. DOI: 10.1016/j.chemosphere.2017.02.008.
  • Nilsson, M.; Tragardh, G.; Ostergren, K. Influence of Temperature and Cleaning on Aromatic and Semi-aromatic Polyamide Thin-film Composite NF and RO Membranes. Sep. Purif. Technol. 2008, 62(3), 717–726. DOI: 10.1016/j.seppur.2008.03.014.
  • Mänttäri, M.; Pihlajamäki, A.; Kaipainen, E.; Nyström, M. Effect of Temperature and Membrane Pre-treatment by Pressure on the Filtration Properties of Nanofiltration Membranes. Desalination. 2002, 145(1–3), 81–86. DOI: 10.1016/S0011-9164(02)00390-9.
  • Nakari, O.; Pihlajamäki, A.; Mänttäri, M. Permeability of Dilute Ionic Liquid Solutions through a Nanofiltration Membrane – Effect of Ionic Liquid Concentration, Filtration Pressure and Temperature. Sep. Purif. Technol. 2016, 163, 267–274. DOI: 10.1016/j.seppur.2016.02.052.
  • Vogel, D.; Simon, A.; Alturki, A. A.; Bilitewski, B.; Price, W. E.; Nghiem, L. D. Effects of Fouling and Scaling on the Retention of Trace Organic Contaminants by a Nanofiltration Membrane: The Role of Cake-enhanced Concentration Polarisation. Sep. Purif. Technol. 2010, 73(2), 256–263. DOI: 10.1016/j.seppur.2010.04.010.
  • de Souza, D. I.; Dottein, E. M.; Giacobbo, A.; Rodrigues, M. A. S.; de Pinho, M. N.; Bernardes, A. M. Nanofiltration for the Removal of Norfloxacin from Pharmaceutical Effluent. J. Environ. Chem. Eng. 2018, 6(5), 6147–6153. DOI: 10.1016/j.jece.2018.09.034.
  • Wei, X.; Wang, Z.; Fan, F.; Wang, J.; Wang, S. Advanced Treatment of a Complex Pharmaceutical Wastewater by Nanofiltration: Membrane Foulant Identification and Cleaning. Desalination. 2010, 251(1–3), 167–175. DOI: 10.1016/j.desal.2009.08.005.
  • Prasannamedha, G.; Kumar, P. S. A Review on Contamination and Removal of Sulfamethoxazole from Aqueous Solution Using Cleaner Techniques: Present and Future Perspective. J. Clean. Produc. 2019, 250, 119553. DOI: 10.1016/j.jclepro.2019.119553.
  • Szymczyk, A.; Fievet, P.; Reggiani, J. C.; Pagetti, J. Characterisation of Surface Properties of Ceramic Membranes by Streaming and Membrane Potentials. J. Membr. Sci. 1998, 146(2), 277–284. DOI: 10.1016/S0376-7388(98)00117-3.
  • Boussu, K.; Vandecasteele, C.; de Van der Bruggen, B. Relation between Membrane Characteristics and Performance in Nanofiltration. J. Membr. Sci. 2008, 310(1–2), 51–65. DOI: 10.1016/j.memsci.2007.10.030.
  • Nam, S.-W.; Choi, D.-J.; Kim, S.-K.; Her, N.; Zoh, K.-D. Adsorption Characteristics of Selected Hydrophilic and Hydrophobic Micropollutants in Water Using Activated Carbon. J. Hazard. Mater. 2014, 270, 144–152. DOI: 10.1016/j.jhazmat.2014.01.037.
  • de Sousa, D. N. R.; Insa, S.; Mozeto, A. A.; Petrovic, M.; Chaves, T. F.; Fadini, P. S. Equilibrium and Kinetic Studies of the Adsorption of Antibiotics from Aqueous Solutions onto Powdered Zeolites. Chemosphere. 2018, 205, 137–146. DOI: 10.1016/j.chemosphere.2018.04.085.
  • Amar, N. B.; Saidani, H.; Deratani, A.; Palmeri, J. Effect of Temperature on the Transport of Water and Neutral Solutes across Nanofiltration Membranes. Langmuir. 2007, 6(23), 2937–2952. DOI: 10.1021/la060268p.
  • Roy, Y.; Warsinger, D. M.; V, J. H. L. Effect of Temperature on Ion Transport in Nanofiltration Membranes: Diffusion, Convection and Electromigration. Desalination. 2017, 420, 241–257. DOI: 10.1016/j.desal.2017.07.020.
  • Amar, N. B.; Saidani, H.; Palmeri, J.; Deratani, A. Effect of Temperature on the Rejection of Neutral and Charged Solutes by Desal 5 DK Nanofiltration Membrane. Desalination. 2009, 246(1–3), 294–303. DOI: 10.1016/j.desal.2008.03.056.
  • Dang, H. Q.; Price, W. E.; Nghiem, L. D. The Effects of Feed Solution Temperature on Pore Size and Trace Organic Contaminant Rejection by the Nanofiltration Membrane NF270. Sep. Purif. Technol. 2014, 125, 43–51. DOI: 10.1016/j.seppur.2013.12.043.
  • Nilsson, M.; Tragardh, G.; Ostergren, K. The Influence of pH, Salt and Temperature on Nanofiltration Performance. J. Membr. Sci. 2008, 312(1–2), 97–106. DOI: 10.1016/j.memsci.2007.12.059.
  • Huang, J.-H.; Shi, L.-J.; Zeng, G.-M.; Li, X.; He, S.-B.; Li, F.; Xiong, Y.-L.; Guo, S.-H.; Zhang, D.-M.; Xie, G.-X. Effects of Feed Concentration and Transmembrane Pressure on Membrane Fouling in Cd2+ Removal by Micellar-enhanced Ultrafiltration. Desalination. 2012, 294, 67–73. DOI: 10.1016/j.desal.2012.03.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.