929
Views
14
CrossRef citations to date
0
Altmetric
Adsorption

Synthesis, characterization and gas adsorption analysis of solvent dependent Zn-BTC metal organic frameworks

, , &
Pages 2159-2169 | Received 25 Apr 2020, Accepted 14 Aug 2020, Published online: 28 Aug 2020

References

  • Reis-Filho, J. S.; Soares, R.; Schmitt, F. C. Climate Change 2014 Synthesis Report. Histopathology. 2002, 40(1), 103–104. DOI: 10.1046/j.1365-2559.2002.1340a.x.
  • Zero Emission Resource. Stationary point sources of CO2. http://www.zeroco2.no/capture/sources-of-co2. Published 2015. (accessed Jan. 3, 2019).
  • Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T. E.Worldwide Innovations in the Development of Carbon Capture Technologies and the Utilization of CO2. Energy Environ. Sci. 2012, 5(6), 7281–7305. DOI: 10.1039/c2ee03403d.
  • Svensson, R.; Odenberger, M.; Johnsson, F.; Strömberg, L. Transportation Systems for CO2 - Application to Carbon Capture and Storage. Energy Convers. Manag. 2004, 45(15–16), 2343–2353. DOI: 10.1016/j.enconman.2003.11.022.
  • Styring, P.; Jansen, D.; de Coninck, H.; Reith, H.; Armstrong, K. CCU in the Green Economy The Centre for Low Carbon Futures (Great Britian), Report, 2011.
  • Mondal, M. K.; Balsora, H. K.; Varshney, P. Progress and Trends in CO2 Capture/separation Technologies: A Review. Energy. 2012, 46(1), 431–441. DOI: 10.1016/j.energy.2012.08.006.
  • Ashley, M.; Magiera, C.; Ramidi, P.;, et al. Nanomaterials and Processes for Carbon Capture and Conversion into Useful By-products for a Sustainable Energy Future. Greenh Gases Sci. Technol. 2012, 2(6), 408–418. DOI: 10.1002/ghg.
  • Herzog, H. J.; THE ECONOMICS OF CO2 CAPTURE1 Howard. In: Massachusetts Institute of Technology (MIT) EL, ed. Fourth International Conference on Greenhouse Gas Control Technologies, August 30 - September 2, 1998, Interlaken, Switzerland. Interlake; 1998: 1–7. doi:10.1016/j.mcna.2010.11.010
  • Cuéllar-Franca, R. M.; Azapagic, A. Carbon Capture, Storage and Utilisation Technologies: A Critical Analysis and Comparison of Their Life Cycle Environmental Impacts. J. CO2 Util. 2015, 9, 82–102. DOI: 10.1016/j.jcou.2014.12.001.
  • Balat, H.; Öz, C. Technical and Economic Aspects of Carbon Capture an Storage — A Review. Energy Explor Exploit. 2008, 25(5), 357–392. DOI: 10.1260/014459807783528883.
  • Saha, S.; Chandra, S.; Garai, B.; Banerjee, R. Carbon Dioxide Capture by Metal Organic Frameworks. Indian J Chem - Sect A Inorganic, Phys Theor Anal Chem. 2012, 51(9–10), 1223–1230. DOI: 10.1021/cr2003272.
  • Dantas, T. L. P.; Luna, F. M. T.; Silva, I. J.;, et al. Carbon Dioxide-nitrogen Separation through Pressure Swing Adsorption. Chem. Eng. J. 2011, 172(2–3), 698–704. DOI: 10.1016/j.cej.2011.06.037.
  • Thiruvenkatachari, R.; Su, S.; An, H.; Yu, X. X. Post Combustion CO2 Capture by Carbon Fibre Monolithic Adsorbents. Prog. Energy Combust. Sci. 2009, 35(5), 438–455. DOI: 10.1016/j.pecs.2009.05.003.
  • Choi, S.; Drese, J. H.; Jones, C. W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem. 2009, 2(9), 796–854. DOI: 10.1002/cssc.200900036.
  • Cheng, M. L.; Zhu, E.; Liu, Q.; Chen, S. C.; Chen, Q.; He, M. Y. Two Coordinated-solvent Directed zinc(II) Coordination Polymers with Rare Gra Topological 3D Framework and 1D Zigzag Chain. Inorg. Chem. Commun. 2011, 14(1), 300–303. DOI: 10.1016/j.inoche.2010.11.020.
  • Seetharaj, R.; Vandana, P. V.; Arya, P.; Mathew, S. Dependence of Solvents, pH, Molar Ratio and Temperature in Tuning Metal Organic Framework Architecture. Arab. J. Chem. 2019, 12(3), 295–315. DOI: 10.1016/j.arabjc.2016.01.003.
  • Julien, P. A.; Mottillo, C.; Friščić, T. Metal-organic Frameworks Meet Scalable and Sustainable Synthesis. Green Chem. 2017, 19(12), 2729–2747. DOI: 10.1039/c7gc01078h.
  • Banerjee, D.; Finkelstein, J.; Smirnov, A.;, et al. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents. Cryst. Growth Des. 2011, 11(6), 2572–2579. DOI: 10.1021/cg200327y.
  • Ghosh, S. K.; Kitagawa, S. Solvent as Structure Directing Agent for the Synthesis of Novel Coordination Frameworks Using a Tripodal Flexible Ligand. CrystEngComm. 2008, 10(12), 1739–1742. DOI: 10.1039/b812645c.
  • Zuo, C.; Lu, Z.; Zhang, M. Solvent-induced Generation of Two Magnesium-based Metal–organic Frameworks with Doubly Inter-penetrated ReO3 Nets Constructed from the Same Linkers but Distinct Inorganic Nodes. INOCHE. 2014. DOI: 10.1016/j.inoche.2014.12.012.
  • Yakovenko, A. A.; Wei, Z.; Wriedt, M.; Li, J. R.; Halder, G. J.; Zhou, H. C. Study of Guest Molecules in Metal-organic Frameworks by Powder X-ray Diffraction: Analysis of Difference Envelope Density. Cryst. Growth Des. 2014, 14(11), 5397–5407. DOI: 10.1021/cg500525g.
  • Li, L.; Wang, S.; Chen, T.; Sun, Z.; Luo, J.; Hong, M. Solvent-Dependent Formation of Cd(II) Coordination Polymers Based on a C 2 -symmetric Tricarboxylate Linker. Am. Chem. Soc. 2012, 12(Ii), 4109–4115. DOI: 10.1021/cg300617h.
  • Liu, T.; Luo, D.; Xu, D.; Zeng, H.; Lin, Z. Solvent Induced Structural Variation in Magnesium Carboxylate Frameworks. Inorg. Chem. Commun. 2013, 29, 110–113. DOI: 10.1016/j.inoche.2012.12.017.
  • Cui, P.; Wu, J.; Zhao, X.;, et al. Two Solvent-dependent zinc(II) Supramolecular Isomers: Rare Kgd and Lonsdaleite Network Topologies Based on a Tripodal Flexible Ligand. Cryst. Growth Des. 2011, 11(12), 5182–5187. DOI: 10.1021/cg201181s.
  • Mazaj, M.; Birsa Čelič, T.; Mali, G.; Rangus, M.; Kaučič, V.; Zabukovec Logar, N. Control of the Crystallization Process and Structure Dimensionality of Mg-benzene-1,3,5-tricarboxylates by Tuning Solvent Composition. Cryst. Growth Des. 2013, 13(8), 3825–3834. DOI: 10.1021/cg400929z.
  • Tripathi, S.; Srirambalaji, R.; Singh, N. Chiral and Achiral Helical Coordination Polymers of Zinc and Cadmium from Achiral 2, 6-bis (Imidazol-1-yl) Pyridine : Solvent Effect and Spontaneous Resolution. Journal of Chemical Sciences, 2014, 126(5), 1423–1431.
  • Wang, F. K.; Yang, S. Y.; Bin, H. R.; Zheng, L. S.; Batten, S. R. Control of the Topologies and Packing Modes of Three 2D Coordination Polymers through Variation of the Solvent Ratio of a Binary Solvent Mixture. CrystEngComm. 2008, 10(9), 1211–1215. DOI: 10.1039/b718995h.
  • Dong, B. X.; Gu, X. J.; Xu, Q. Solvent Effect on the Construction of Two Microporous Yttrium-organic Frameworks with High Thermostability Viain Situ Ligand Hydrolysis. Dalt. Trans. 2010, 39(24), 5683–5687. DOI: 10.1039/b917515f.
  • Tzeng, B.; Yeh, H.; Chang, T.; Lee, G. Novel Coordinated-Solvent Induced Assembly of Cd (II) Coordination Polymers Containing 4,4′-Dipyridylsulfide.Crystal Growth & Design, 2009, 2(Ii), 10–13.
  • Huang, W. H.; Yang, G. P.; Chen, J.; Chen, X.; Zhang, C.-P.; Wang, -Y.-Y.; Shi, Q.-Z.;, et al. Solvent Influence on Sizes of Channels in Three New Co(II) Complexes, Exhibiting an Active Replaceable Coordinated Site. Cryst. Growth Des. 2013, 13(1), 66–73. DOI: 10.1021/cg301146u.
  • Zhou, X.; Liu, P.; Huang, W.-H.; Kang, M.; Wang, -Y.-Y.; Sh, Q.-Z. Solvents Influence on Sizes of Channels in Three Fry Topological Mn(II)- MOFs Based on Metal-carboxylate Chains: Syntheses, Structures and Magnetic Properties† Xiang. CrystEngComm. 2013, 15(207890), 8125. DOI: 10.1039/b000000x.
  • He, Y.; Guo, J.; Zhang, H.; Liu, Y. Tuning the Void Volume in a Series of Isomorphic Porous Metal–organic Frameworks by Varying the Solvent Size and Length of Organic Ligands. R. Soc. Chem. 2014, 16, 5450–5457. DOI: 10.1039/c4ce00347k.
  • Pachfule, P.; Das, R.; Poddar, P.; Banerjee, R. Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link. Cryst. Growth Des. 2011, 11(4), 1215–1222. DOI: 10.1021/cg101414x.
  • Electric Power Research Institute EPRI. Assessment of Post-Combustion Capture Technology Developments.
  • Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U. The Progression of Al-based Metal-organic Frameworks - from Academic Research to Industrial Production and Applications. Microporous Mesoporous Mater. 2012, 157, 131–136. DOI: 10.1016/j.micromeso.2011.08.016.
  • Desantis, D.; Mason, J. A.; James, B. D.; Houchins, C.; Long, J. R.; Veenstra, M. Frameworks for Hydro-gen and Natural Gas Storage Techno-economic Analysis of Metal-organic Frameworks for Hydro- Gen and Natural Gas Storage. Energy Fuels. 2017, 31, 2024–2032. DOI: 10.1021/acs.energyfuels.6b02510.
  • Eddaoudi, M.; Li, H.; Yaghi, O. M. Highly Porous and Stable Metal - Organic Frameworks : Structure Design and Sorption Properties. J. Am. Chem. Soc. 2000, 122(7), 1391–1397. DOI: 10.1021/ja9933386.
  • V V, B.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C. Metal-organic Frameworks: Structure, Properties, Methods of Synthesis and Characterization. Russ. Chem. Rev. 2015, 85(3), 280–307. DOI: 10.1070/rcr4554.
  • Rubio-martinez, M.; Avci-camur, C.; Maspoch, D.;, et al. Chem Soc Rev New Synthetic Routes Towards MOF Production at Scale. R. Soc. Chem. 2017, 46, 3453–3480. DOI: 10.1039/C7CS00109F.
  • Schlichte, K.; Kratzke, T.; Kaskel, S. Improved Synthesis, Thermal Stability and Catalytic Properties of the Metal-organic Framework Compound Cu 3 (BTC) 2. Microporous Mesoporous Mater. 2003, 73, 81–88. DOI: 10.1016/j.micromeso.2003.12.027.
  • Ctmah, O.; Chui, S. S.; Lo, S. M.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. R EPORTS A Chemically Functionalizable Nanoporous Material. sciencemag. 1999, 283(February), 1148–1151. DOI: 10.1126/science.283.5405.1148.
  • Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]. Science (80-.). 1999, 283(5405), 1148LP- 1150. DOI: 10.1126/science.283.5405.1148.
  • Wang, G.; Liu, Y.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y. A Novel Metal–organic Framework Based on Bismuth and Trimesic Acid: Synthesis, Structure and Properties. R. Socitey Chem. 2015, 789(2), 16238–16241. DOI: 10.1039/c5dt03111g.
  • Feldblyum, J. I.; Liu, M.; Gidley, D. W.; Matzger, A. J. Reconciling the Discrepancies between Crystallographic Porosity and Guest Access as Exemplified by Zn-HKUST-1. J. Am. Chem. Soc. 2011, 1, 18257–18263. DOI: 10.1021/ja2055935.
  • Wang, X.; Ma, X.; Wang, H.; Huang, P.; Du, X.; Lu, X. A Zinc (II) Benzenetricarboxylate Metal Organic Framework with Unusual Adsorption Properties, and Its Application to the Preconcentration of Pesticides. Microchim. Acta. 2017, 184(10), 3681–3687. DOI: 10.1007/s00604-017-2382-1.
  • Bhardwaja, N.; Pandeya, S. K.; Mehtaa, J.; Bhardwaja, S. K.; Ki- Hyun Kimc*, A. D. Bioactive Nano Metal-Organic Frameworks as Antimicrobials against Gram-. R. Soc. Chem. 2018, 7, 931–941. DOI: 10.1039/c8tx00087e.
  • Wang, G.; Liu, Y.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y. A Novel Metal–organic Framework Based on Bismuth and Trimesic Acid: Synthesis, Structure and Properties. R. Soc. Chem. 2015, 44(2), 16238–16241. DOI: 10.1039/c5dt03111g.
  • Anbia, M.; Faryadras, M.; Ghaffarinejad, A. Synthesis and Characterization of Zn 3 (BTC) 2 Nanoporous Sorbent and Its Application for Hydrogen Storage at Ambient Temperature. Journal of Applied Chemical Research,2015, 41, 33–41. DOI: 10.14062/j..0454-5648.2011.03.014.
  • Sel, K.; Demirci, S.; Faruk, O.; Aktas, N.; Sahiner, N. NH3 Gas Sensing Applications of Metal Organic Frameworks. Microelectron. Eng. 2015, 136, 71–76. DOI: 10.1016/j.mee.2015.04.035.
  • Bhunia, M. K.; Hughes, J. T.; Fettinger, J. C.;, et al. Thermochemistry of Paddle Wheel MOFs : Cu-HKUST-1 and Zn-HKUST-1 Thermochemistry of Paddle Wheel MOFs : Cu-HKUST-1 and Zn-HKUST-1. Am. Chem. Soc. 2013, 29(May), 8140–8145. DOI: 10.1021/la4012839.
  • Liu, C.; Sang, X.; Peng, L.; Wu, T.; Han, B.; Yang, G. Solvent Determines the Formation and Properties of Metal-organic Framework Bingxing. R. Soc. Chem. 2015. DOI: 10.1039/C5RA02440D.
  • Gargiulo, V.; Alfè, M.; Raganati, F.; Lisi, L.; Chirone, R.; Ammendola, P. BTC-based Metal-organic Frameworks : Correlation between Relevant Structural Features and CO 2 Adsorption Performances. Fuel. 2018, 222(March), 319–326. DOI: 10.1016/j.fuel.2018.02.093.
  • Yan, X.; Komarneni, S.; Zhang, Z.; Yan, Z. Extremely Enhanced CO 2 Uptake by HKUST-1 Metal – Organic Framework via a Simple Chemical Treatment. Microporous Mesoporous Mater. 2014, 183, 69–73. DOI: 10.1016/j.micromeso.2013.09.009.
  • Sigma-Aldrich. European Export | Sigma-Aldrich. http://www.sigmaaldrich.com/european-export.html. Published 2017. (accessed Apr 15, 2019).
  • Sigma-Aldrich. Ethanol _ Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/product/mm/100974?lang=en&region=PK. (accessed Apr 15, 2019).
  • Sigma-Aldrich. Water, deionized _ H2O _ Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/product/sigald/38796?lang=en&region=PK. (accessed Apr 15, 2019).
  • Sigma-Aldrich. N,N-Dimethylformamide, anhydrous, 99. https://www.sigmaaldrich.com/catalog/product/sial/227056?lang=en&region=PK. (accessed Apr 15, 2019).
  • Sigma-Aldrich. Methanol, for HPLC, ≥99. https://www.sigmaaldrich.com/catalog/product/sigald/34860?lang=en&region=PK. (accessed Apr 15, 2019).
  • Sigma-Aldrich. 2-Propanol, HPLC Plus, for HPLC, GC, and residue analysis, 99. https://www.sigmaaldrich.com/catalog/product/sigald/650447?lang=en&region=PK. (accessed Apr 15, 2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.