307
Views
7
CrossRef citations to date
0
Altmetric
Adsorption

Study on adsorption performance of 2,4,6-trichlorophenol from aqueous solution onto biochar derived from macroalgae as an efficient adsorbent

ORCID Icon, &
Pages 2183-2193 | Received 26 May 2020, Accepted 19 Aug 2020, Published online: 08 Sep 2020

References

  • Bruce, R. M.; Santodonato, J.; Neal, M. W. Summary Review of the Health Effects Associated with Phenol. Toxicol. Ind. Health. 1987, 3, 535–568. DOI: 10.1177/074823378700300407.
  • Mohammadi, S.; Kargari, A.; Sanaeepur, H.; Abbassian, K.; Najafi, A.; Mofarrah, E. Phenol Removal from Industrial Wastewaters: A Short Review. Desalinat. Water Treat. 2015, 53, 2215–2234. DOI: 10.1080/19443994.2014.883327.
  • Sun, X.; Wang, C.; Li, Y.; Wang, W.; We, J. Treatment of Phenolic Wastewater by Combined UF and NF/RO Processes. Desalination. 2015, 355, 68–74. DOI: 10.1016/j.desal.2014.10.018.
  • Snoeyink, V. L.; McCreary, J. J.; Murin, C. J. (1997). Carbon Adsorption of Traces Organic Compounds; Municipal Research Lab, Office of Research and Development, U.S. Environmental Protection Agency: Cincinnati, Ohio. Washington, DC. EPA/600/2-77/223
  • Ahmaruzzaman, M.;. Adsorption of Phenolic Compounds on Low-cost Adsorbents: A Review. Adv. Coll. Interf. Sci. 2008, 143, 48–67. DOI: 10.1016/j.cis.2008.07.002.
  • Laura, G. C. V.; Neda, M.; Miao, C.; Debjani, M.; Keith, E. T.; Nihar, B. A Short Review of Techniques for Phenol Removal from Wastewater. Curr. Pollut. Rep. 2016, 2, 157–167. DOI: 10.1007/s40726-016-0035-3.
  • Li, X.; Chen, S.; Fan, X.; Quan, X.; Tan, F.; Zhang, Y.; Gao, J. Adsorption of Ciprofloxacin, Bisphenol and 2-chlorophenol on Electro Spun Carbon Nanofibers: In Comparison with Powder Activated Carbon. J. Coll. Interf. Sci. 2015, 447, 120–127. DOI: 10.1016/j.jcis.2015.01.042.
  • Afsharnial, M.; Mahdi, S.; Amin, Z.; Mohammad, R. N.; Hamed, B. Phenol Removal from Aqueous Environment by Adsorption onto Pomegranate Peel Carbon. Elect. Phys. 2016, 8(11), 3248–3256. DOI: 10.19082/3248.
  • Rengaraj, S.; Seug-Hyeon, M.; Sivabalan, R.; Arabindoo, B.; Murugesan, V. Agricultural Solid Waste for the Removal of Organics: Adsorption of Phenol from Water and Wastewater by Palm Seed Coat Activated Carbon. Waste Manage. 2002, 22, 543–548. DOI: 10.1016/S0956-053X(01)00016-2.
  • Aksu, Z.; Yener, J. A Comparative Adsorption/biosorption Study of Mono-chlorinated Phenols onto Various Sorbents. Waste Manage. 2001, 21(8), 695–702. DOI: 10.1016/S0956-053X(01)00006-X.
  • Namasivayam, C.; Thamaraiselvi, K. Adsorption of 2-chlorophenol by “Waste” Red Mud. Fresenius Environ. Bull. 1998, 7, 314–319.
  • Podkoscielny, P.; Dabrowski, A.; Marijuk, O. V. Heterogeneity of Active Carbons in Adsorption of Phenol Aqueous Solutions. Appl. Surf. Sci. 2003, 205, 297–303. DOI: 10.1016/S0169-4332(02)01154-6.
  • Abdelkreem, M.;. Adsorption of Phenol from Industrial Wastewater Using Olive Mill Waste. APCBEE Procedia. 2013, 5, 349–357. DOI: 10.1016/j.apcbee.2013.05.060.
  • Javid, N.; Malakootian, M. Removal of Bisphenol A from Aqueous Solutions by Modified-carbonized Date Pits by ZnO Nano-particles. Desalin. Water Treat. 2017, 95, 144–151. DOI: 10.5004/dwt.2017.21592.
  • Javid, N.; Nasiri, A.; Malakootian, M. Removal of Nonylphenol from Aqueous Solutions Using Carbonized Date Pits Modified with ZnO Nanoparticles. Desalin. Water Treat. 2019, 141, 140–148. DOI: 10.5004/dwt.2019.23428.
  • Nur, M. B. L.; Kasturi, G.; Mamman, S.; Nor, M. H.; Nurul, Y. R.; Muggundha, R.; Noorfatimah, Y.; Nur, N. M. Z. Removal of 2,4-dichlorophenol from Wastewater by an Efficient Adsorbent of Magnetic Activated Carbon. Sep. Sci. Technol. 2020. DOI: 10.1080/01496395.2020.1719156.
  • Nazal, K.;. Marine Algae Bioadsorbents for Adsorptive Removal of Heavy Metals; Advanced Sorption Process Applications, Serpil Edebali. IntechOpen: London, United Kingdom, 2019. DOi: 10.5772/intechopen.80850..
  • Eugenia, R.; Pilar, R.; Roberto, H.; Manuel, E. S. Biosorption of Phenolic Compounds by the Brown Alga Sargassum Muticum. Chem. Technol. Biotechnol. 2006, 81(7), 1093–1099. DOI: 10.1002/jctb.1430.
  • Nazal, K.; Durga, R.; Abuzaid, N. The Nature and Kinetics of 2,4-dimethylphenol Adsorption in Aqueous Solution on Biochar Derived from Sargassum Boveanum Macroalgae. J. Water Suppl. 2020, 2020142. DOI: 10.2166/aqua.2020.142.
  • Podgorskii, V. S. T. P.; Kasatkina, O. G.; Lozovaia. Yeasts—biosorbents of Heavy Metals. Mikrobiol Z, 66, 91–103. Pubmed ID 15104060. 2004.
  • Freundlich, H. M. F.;. Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie. 1906, 57, 385–471. DOI: 10.1515/zpch-1907-5723.
  • Langmuir, I.;. The Constitution and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38(11), 2221–2295. DOI: 10.1021/ja02242a004.
  • Lagergren, S.;. Zurtheorie Der Sogenannten Adsorption Gelösterstoffe Kungliga Svenska Vetenskapsakademiens. Handlingar. 1898, 24(4), 1–39.
  • Ho, Y. S.; McKay, G. A Comparison of Chermosorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76(4), 332–340. DOI: 10.1205/095758298529696.
  • Chien, S. H.; Clayton, W. R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption on Soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. DOI: 10.2136/sssaj1980.03615995004400020013x.
  • Sekkal, M.; Huvenne, J.; Legrand, P.; Sombret, B.; Mollet, J.; Mouradi-Givernaud, A.; Verdus, M. Direct Structural Identification of Polysaccharides from Red Algae by FTIR Micro Spectrometry I: Localization of Agar in Gracilariaverrucosa Sections. Microchim. Acta. 1993, 112(1–4), 1–10. DOI: 10.1007/BF01243315.
  • Ayca, A.; OrkunOvez, N.; Bikem, O. Macro Algae Gracilariaverrucosa as A Biosorbent: A Study of Sorption Mechanisms. Algal Res. 2012, 1, 194–204. DOI: 10.1016/j.algal.2012.07.001.
  • Cuizano, N.; Llanos, B.; Navarro, A. E. Application of Marine Seaweeds as Lead (II) Biosorbent: Analysis of the Equilibrium State. Rev. Soc. Quím. Perú. 2009, 75, 33–43. http://www.scielo.org.pe/pdf/rsqp/v75n1/a06v75n1.pdf.
  • Navarro, A. E.; Cuizano, N.; Portales, R.; Llanos, B. Adsorptive Removal of 2-nitrophenol and 2-chlorophenol by Cross-linked Algae from Aqueous Solutions. Sep. Sci. Technol. 2008, 43, 3183–3199. DOI: 10.1080/01496390802221642.
  • Li, L.; Quinlivan, P. A.; Knappe, D. R. U. Effects of Activated Carbon Surface Chemistry and Pore Structure on the Adsorption of Organic Contaminants from Aqueous Solution. Carbon. 2002, 40, 2085–2100. DOI: 10.1016/S0008-6223(02)00069-6.
  • Hamdaoui, O.; Naffrechoux, E. Modeling of Adsorption Isotherms of Phenol and Chlorophenols onto Granular Activated Carbon Part I. Two-parameter Models and Equations Allowing Determination of Thermodynamic Parameters. J. Hazard. Mater. 2007, 147, 381–394. DOI: 10.1016/j.jhazmat.2007.01.021.
  • Zazouli, M. A.; Balarak, D.; Mahdavi, Y. Application of Azolla for 2, 4, 6-Trichlorophenol (TCP) Removal from Aqueous Solutions. Hyhiene Sci. 2013, 2, 17–24.
  • Gonzalez-Serrano, E.; Cordero, T.; Rodriguez-Mirasol, J.; Cotoruelo, L.; Rodriguez, J. Removal of Water Pollutants with Activated Carbons Prepared from H3PO4 Activation of Lignin from Kraft Black Liquors. Water Res. 2004, 38, 3043–3050. DOI: 10.1016/j.watres.2004.04.048.
  • Derrick, S. D.; Ajay, K. M.; Bhekie, B. M. Artificial Neural Network Simulations and Experimental Results: Removal of Trichlorophenol from Water Using Chromolaenaodorata Stem. Water SA. 2014, 40, 2. DOI: 10.4314/wsa.v40i2.19.
  • Kuśmierek, K.; Świątkowski, A.; Dąbek, L. Removal of 2,4,6-Trichlorophenol from Aqueous Solutions Using Agricultural Waste as Low-cost Adsorbents. Environ. Prot. Eng. 2017, 43(4), 149–163. DOI: 10.5277/epe170412.
  • Zheng, S.; Yang, Z.; Jo, D. H.; Park, Y. H. Removal of Chlorophenols from Groundwater by Chitosan Sorption. Water Res. 2004, 38, 2315. DOI: 10.1016/j.watres.2004.02.010.
  • Hameed, B. H.;. Equilibrium and Kinetics Studies of 2,4,6-trichlorophenol Adsorption onto Activated Clay. Colloids Surf. B. 2007, 307, 45. DOI: 10.1016/j.colsurfa.2007.05.002.
  • Radhika, M.; Palanivelu, K. Adsorptive Removal of Chlorophenols from Aqueous Solution by Low Cost Adsorbent-kinetics and Isotherm Analysis. J Hazard. Mater. B. 2006, 138, 116. DOI: 10.1016/j.jhazmat.2006.05.045.
  • Kumar, N. S.; Woo, H. S.; Min, K. Equilibrium and Kinetic Studies on Biosorption of 2,4,6-trichlorophenol from Aqueous Solutions by Acacia Leucocephala Bark. Colloids Surf. B. 2012, 94, 125. DOI: 10.1016/j.colsurfb.2012.01.048.
  • Denizli, A.; Cihangir, N.; Rad, A. Y.; Taner, M.; Alsancak, G. Removal of Chlorophenols from Synthetic Solutions Using Phanerochaetechrysosporium, Proc. Biochem. 2004, 39, 2025. DOI: 10.1016/j.procbio.2003.10.003.
  • Kuśmierek, K.; Świątkowski, A.; Syga, P.; Dąbek, L. Influence of Chlorine Atom Number in Chlorophenols Molecules on Their Adsorption on Activated Carbon. Fresenius Environ. Bull. 2014, 23(3A), 947–951.
  • Chen, G.-C.; Shan, X.-Q.; Wang, Y.-S.; Wena, B.; Pei, Z.-G.; Xie, Y.-N.; Liu, T.; Pignatello, J. J. Adsorption of 2,4,6-trichlorophenol by Multi-walled Carbon Nanotubes as Affected by Cu (II). Water Res. 2009, 43, 2409–2418. DOI: 10.1016/j.watres.2009.03.002.
  • Fan, J.; Zhang, J.; Zhang, C.; Ren, L.; Shi, Q. Adsorption of 2,4,6-trichlorophenol from Aqueous Solution onto Activated Carbon Derived from Loosestrife. Desalination. 2011, 267, 139–146. DOI: 10.1016/j.desal.2010.09.016.
  • Ghezali, S.; Mahdad-Benzerdjeb, A.; Ameri, M.; Bouyakoub, A. Z. Adsorption of 2,4,6-trichlorophenol on Bentonite Modified with Benzyl Dimethyl Tetra Decyl Ammonium Chloride. Chem. Int. 2018, 4(1), 24–32. http://bosaljournals.com/chemint/images/pdffiles/18-4.pdf.
  • Weber, W. J., Jr; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanitary Eng. Div. 1963, 89, 31–60.
  • Zaghouane-Boudiaf, H.; Boutahala, M. Adsorption of 2, 4, 5-trichlorophenol by Organo-montmorillonites from Aqueous Solutions: Kinetics and Equilibrium Studies. Chem. Eng. J. 2011, 170, 120–126. DOI: 10.1016/j.cej.2011.03.039.
  • Saha, P.; Chowdhury, S. 2011. Insight into Adsorption Thermodynamics. In Thermodynamics; 349–364, Tadashi, M., Ed. InTech. ISBN: 978-953-307-544-0. http://www.intechopen.com/books/thermodynamics/insight-intoadsorption-thermodynamics
  • Sakhiya, A. K.; Anand, A.; Kaushal, P. Production, Activation, and Applications of Biochar in Recent Times. Biochar. 2020. DOI: 10.1007/s42773-020-00047-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.