121
Views
6
CrossRef citations to date
0
Altmetric
Chromatography

Enantioseparation of racemic amino alcohols using green micellar liquid chromatography and confirmation of absolute configuration with elution order

, & ORCID Icon
Pages 2278-2286 | Received 09 Jun 2020, Accepted 01 Sep 2020, Published online: 17 Sep 2020

References

  • Alwera, S.; Bhushan, R. Liquid Chromatographic Enantioseparation of Three Beta‐adrenolytics Using New Derivatizing Reagents Synthesized from (S)‐ketoprofen and Confirmation of Configuration of Diastereomers. Biomed. Chromatogr. 2016, 30(11), 1772–1781.
  • Welch, C. J.; Wu, N.; Biba, M.; Hartman, R.; Brkovic, T.; Gong, X.; Helmy, R.; Schafer, W.; Cuff, J.; Pirzada, Z.; et al. Greening Analytical Chromatography. Trends Analyt Chem. 2010, 29(7), 667–680.
  • Ruiz-Angel, M. J.; Peris-García, E.; García-Alvarez-Coque, M. C. Reversed-phase Liquid Chromatography with Mixed Micellar Mobile Phases of Brij-35 and Sodium Dodecyl Sulphate: A Method for the Analysis of Basic Compounds. Green Chem. 2015, 17, 3561–3570.
  • Alwera, S.; Bhushan, R. Micellar Liquid Chromatography for Enantioseparation of β-adrenolytics Using (S)-ketoprofen-based Reagents. J Liq Chromatogr Relat Technol. 2017, 40(14), 707–714.
  • Alwera, S.; Bhushan, R. RP‐HPLC Enantioseparation of β‐adrenolytics Using Micellar Mobile Phase without Organic Solvents. Biomed. Chromatogr. 2017, 31(11), e3983. https://onlinelibrary.wiley.com/doi/abs/10.1002/bmc.3983.
  • Esteve-Romero, J.; Carda-Broch, S.; Gil-Agustí, M.; Capella-Peiró, M. E.; Bose, D. Micellar Liquid Chromatography for the Determination of Drug Materials in Pharmaceutical Preparations and Biological Samples. Trends Anal Chem. 2005, 24, 75–91.
  • Stępnik, K. E.;. A Concise Review of Applications of Micellar Liquid Chromatography to Study Biologically Active Compounds. Biomed. Chromatogr. 2017, 31, e3741.
  • Alwera, S.;. In Situ Derivatization of (Rs)-mexiletine and Enantioseparation Using Micellar Liquid Chromatography: A Green Approach. ACS Sustainable Chem. Eng. 2018, 6, 11653–11661.
  • Xu, B. J.; Zhang, D. T.; Shen, B. C.; Xu, X. Z. Enantioseparation of Seven Amino Alcohols on Teicoplanin Chiral Column. Chin. J. Anal. Chem. 2007, 35, 55–60.
  • Zou, Y.; Wang, L.; Liu, Q.; Liu, H.; Li, F. Enantioseparations of 11 Amino Alcohols Using Di‑n‑amyl l‑Tartrate–Boric Acid Complex as Chiral Mobile Phase Additive by RP‑HPLC. Chromatographia. 2015, 78, 753–761.
  • Alwera, S.; Bhushan, R. (Rs)-propranolol: Enantioseparation by HPLC Using Newly Synthesized (S)-levofloxacin-based Reagent, Absolute Configuration of Diastereomers and Recovery of Native Enantiomers by Detagging. Biomed. Chromatogr. 2016, 30(8), 1223–1233.
  • Ilisz, I.; Aranyi, A.; Pataj, Z.; Péter, A. Recent Advances in the Direct and Indirect Liquid Chromatographic Enantioseparation of Amino Acids and Related Compounds: A Review. J Pharmaceut Biomed. 2012, 69, 28–41.
  • Gołkiewicz, W.; Polak, B., Indirect Methods for the Chromatographic Resolution of Drug Enantiomers. 2012, Józ´wiak, K.; Lough, W. J.; Wainer, I. W. Drug stereochemistry. Analytical methods and pharmacology, third edition, vol. 211, Informa Healthcare, London, UK, 2012, pp 69–94.
  • Alwera, S.; Alwera, V.; Sehlangia, S. An Efficient Method for the Determination of Enantiomeric Purity of Racemic Amino Acids Using Micellar Chromatography, a Green Approach. Biomed. Chromatogr. 2020, 34(7), e3983, 1–9. DOI: 10.1002/bmc.4943)..
  • Alwera, V.; Sehlangia, S.; Alwera., S. A Sensitive Micellar Liquid Chromatographic Method for the Rectification of Enantiomers of Esmolol, and Determination of Absolute Configuration and Elution Order. J Liq Chromatogr Relat Technol. 2020, 845, 1–8. DOI: 10.1080/10826076.2020.1798250.
  • König, W.; Geiger, R. N-Hydroxyverbindungen als katalysatorenfür die Aminolyse aktivierter Ester. Chem. Ber. 1973, 106(11), 3626.
  • Anderson, G. W.; Zimmerman, J. E.; Callahan, F. M. N. Hydroxysuccinimide Esters in Peptide Synthesis. J. Am. Chem. Soc. 1963, 85(19), 3039–3040.
  • Mei, X.; Ding, Y.; Li, P.; Xu, L.; Wang, Y.; Guo, Z.; Shen, W.; Yang, Y.; Wang, Y.; Xiao, Y.; et al. A Novel System for Zero-discharge Treatment of High-salinity Acetonitrilecontaining Wastewater: Combination of Pervaporation with A Membraneaerated Bioreactor. Chem. Eng. J. 2020, 384, 123338.
  • Yabré, M.; Ferey, L.; Somé, I. T.; Gaudin, K. Greening Reversed-phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules. 2018, 23, 1065.
  • Armstrong, D. W.; Henry, S. J. Use of an Aqueous Micellar Mobile Phase for Separation of Phenols and Polynuclear Aromatic Hydrocarbons via HPLC. J Liq Chromatogr. 1980, 3(5), 657–662.
  • Roses, M.; Rafols, C.; Bosch, E.; Martınez, A. M.; Abraham, M. H. Solute–solvent Interactions in Micellar Electrokinetic Chromatography Characterization of Sodium Dodecyl sulfate–Brij 35 Micellar Systems for Quantitative Structure–activity Relationship Modelling. J. Chromatogr. A. 1999, 845, 217–226.
  • Koenigbauer, M. J.;. Application of Micellar Mobile Phases for the Assay of Drugs in Biological Fluids. J Chromatogr B Biomed. 1990, 531, 79–99.
  • Walash, M. I.; Belal, F.; Tolba, M. M.; Halawa, M. I. Micellar Liquid Chromatography and Derivative Spectrophotometry for the Simultaneous Determination of Acemetacin and Chlorzoxazone in Their Tablets and Human Plasma. Sep. Sci. Technol. 2015, 50, 1403–1412.
  • Wang, P.; Li, J.; Ding, X. J. Simultaneous Determination of Benzoic Acid and Sorbic Acid in Soy Sauce and Vinegar by Liquid Chromatography Using a Short Column and a Micellar Mobile Phase. Chin J Chromatogr. 2016, 34, 327–331.
  • Ogino, K.; Uchiyama, H.; Abe, M. Mixed Surfactant Systems; Marcel Dekker: New York, 1993.
  • Scamehorn, J. F.; Phenomena in Mixed Surfactant Systems. 1985, Phenomena in Mixed Surfactant Systems; Scamehorn, J. ACS Symposium Series; American Chemical Society: Washington, DC, 1986, vol. 311, pp 1–27.
  • Scamehorn, J. F.; Schechter, R. S.; Wade, W. H. Adsorption of Surfactants on Mineral Oxide Surfaces from Aqueous Solutions: II: Binary Mixtures of Anionic Surfactants. ‎J Colloid Interface Sci. 1982, 85, 479–493.
  • Qazi, M. J.; Liefferink, R. W.; Schlegel, S. J.; Backus, E. H. G.; Bonn, D.; Shahidzadeh, N. Influence of Surfactants on Sodium Chloride Crystallization in Confinement. Langmuir. 2017, 33, 4260–4268.
  • Hait, S. K.; Moulik, S. P. Determination of Critical Micelle Concentration (CMC) of Nonionic Surfactants by Donor-acceptor Interaction with Iodine and Correlation of CMC with Hydrophile-lipophile Balance and Other Parameters of the Surfactants. J Surfactants Deterg. 2001, 4(3), 303–309.
  • Park, S. H.; Choi, H. K. The Effects of Surfactants on the Dissolution Profiles of Poorly Water-soluble Acidic Drugs. Int. J. Pharm. 2006, 321, 35–41.
  • He, Z.; Zhong, D.; Chen, X.; Liu, X.; Tang, X.; Zhao, L. Development of a Dissolution Medium for Nimodipine Tablets Based on Bioavailability Evaluation. Eur. J. Pharm. Sci. 2004, 21, 487–491.
  • Kahlweit, M.;. Kinetics of Formation of Association Colloids. ‎J Colloid Interface Sci. 1982, 90, 92–99.
  • Griffiths, I. M.; Bain, C. D.; Breward, C. J. W.; Colegate, D. M.; Howell, P. D.; Waters, S. L. On the Predictions and Limitations of the Becker–Döring Model for Reaction Kinetics in Micellar Surfactant Solutions. ‎J Colloid Interface Sci. 2011, 360, 662–671.
  • Aniansson, E. A. G.; Wali, S. N. Kinetics of Step-wise Micelle Association. J. Phys. Chem. 1974, 78, 1024–1030.
  • Zhu, L.; Ding, L.; Zhang, O.; Wang, L.; Tang, F.; Liu, Q.; Yao, S. Direct Analysis of Cryptotanshinone and Tanshinone IIA in Biological Samples and Herbal Medicinal Preparations by a Green Technique of Micellar Liquid Chromatography. Green Chem. 2009, 11, 132–137.
  • ICH. Q2B Document: Validation of Analytical Procedures. International conference of harmonization: Geneva, 1996.
  • Bhushan, R.; Dubey, R. Application of Amino Acid Amides as Chiral Auxiliaries in Difluoro Dinitro Benzene and Cyanuric Chloride Moieties for High-performance Liquid-chromatographic Enantioseparation of Selenomethionine and Its Mixture with Methionine and Cysteine. Amino Acids. 2012, 42, 1417–1423.
  • Bhushan, R.; Dubey, R. Validated High‐performance Liquid Chromatographic Enantioseparation of Selenomethionine Using Isothiocyanate Based Chiral Derivatizing Reagents. Biomed. Chromatogr. 2012, 26(4), 471–475.
  • Bhusahn, R.; Nagar, H. Indirect Enantioseparation of Selenomethionine by Reversed‐phase High‐performance Liquid Chromatography Using a Newly Synthesized Chiral Derivatizing Reagent Based on (S)‐naproxen Moiety. Biomed. Chromatogr. 2014, 28, 106–111.
  • Bhushan, R.; Dubey, R. Synthesis of (S)-naproxen-benzotriazole and Its Application as Chiral Derivatizing Reagent for Microwave-assisted Synthesis and Indirect High Performance Liquid Chromatographic Separation of Diastereomers of Penicillamine, Cysteine and Homocysteine. J. Chromatogr. A. 2011, 1218, 3648–3653.
  • Kühnreich, R.; Holzgrabe, U. High‐performance Liquid Chromatography Evaluation of the Enantiomeric Purity of Amino Acids by Means of Automated Precolumn Derivatization with Ortho‐phthalaldehyde and Chiral Thiols. Chirality. 2016, 28, 795–804.
  • Bhushan, R.; Kumar, R. Analytical and Preparative Enantioseparation of DL-penicillamine and DL-cysteine by High-performance Liquid Chromatography on Alpha-acid Glycoprotein and Beta-cyclodextrin Columns Using Ninhydrin as a Reversible Tagging Reagent. J. Chromatogr. A. 2009, 1216, 3413–3417.
  • Wang, Q.; Feng, J.; Han, H.; Zhu, P.; Wu, H.; Marina, M. L.; Crommen, J.; Jiang, Z. Enantioseparation of N-derivatized Amino Acids by Micro-liquid Chromatography Using Carbamoylated Quinidine Functionalized Monolithic Stationary Phase. J. Chromatogr. A. 2014, 1363, 207–215.
  • Płotka-Wasylka, J.;. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta. 2018, 181, 204–209.
  • Alwera, V.; Sehlangia, S.; Alwera., S. Micellar Liquid Chromatographic Green Enantioseparation of Racemic Amino Alcohols and Determination of Elution Order. Biomed. Chromatogr. 2020, 34(8), e4954, 1–7. DOI: 10.1002/bmc.4954).
  • Gałuszka, A.; Konieczka, P.; Migaszewski, Z. M.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. Trends Analyt Chem. 2012, 37, 61–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.