221
Views
9
CrossRef citations to date
0
Altmetric
Adsorption

Response surface methodology modeling for methylene blue removal by chemically modified porous carbon: Adsorption mechanism and role of surface functional groups

ORCID Icon, , , , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 2232-2242 | Received 25 Jun 2020, Accepted 01 Sep 2020, Published online: 20 Sep 2020

References

  • Ghaedi, A. M.; Vafaei, A. Applications of Artificial Neural Networks for Adsorption Removal of Dyes from Aqueous Solution: A Review. Adv. Colloid Interface Sci. 2017, 245, 20–39. DOI: 10.1016/j.cis.2017.04.015.
  • Li, Y.; Pan, S.; Yu, Q.; Ding, X.; Liu, R. Adsorption Mechanism and Electrochemical Performance of Methyl Blue onto Magnetic Ni (1-xy) CoyZnxFe2O4 Nanoparticles Prepared via the Rapid-combustion Process. Ceram. Int. 2020, 46, 3614–3622. DOI: 10.1016/j.ceramint.2019.10.080.
  • Pan, S.; Liu, Y.-H.; Wang, Z.; Huang, W.; Song, L.; Liu, R.-J. Optimization on Adsorption Process of Congo Red onto Magnetic Ni0. 5Cu0. 5Fe2O4/SiO2 Nanocomposites and Their Adsorption Mechanism. J. Nanosci. Nanotechnol. 2020, 20, 789–801. DOI: 10.1166/jnn.2020.16916.
  • Yu, L.; Li, Y.; Pan, S.; Huang, W.; Liu, R. Adsorption Mechanisms and Electrochemical Properties of Methyl Blue onto Magnetic Ni X Mg Y Zn (1-xy) Fe 2 O 4 Nanoparticles Fabricated via the Ethanol-Assisted Combustion Process. Water, Air, Soil Pollut. 2020, 231, 1–12. DOI: 10.1007/s11270-020-04686-9.
  • Liu, L.; Lin, Y.; Liu, Y.; Zhu, H.; He, Q. Removal of Methylene Blue from Aqueous Solutions by Sewage Sludge Based Granular Activated Carbon: Adsorption Equilibrium, Kinetics, and Thermodynamics. J. Chem. Eng. Data. 2013, 58, 2248–2253. DOI: 10.1021/je4003543.
  • Tran, T. V.; Phan, T.-Q. T.; Nguyen, D. T. C.; Nguyen, T. T.; Nguyen, D. H.; Vo, D.-V. N.; Bach, L. G.; Nguyen, T. D. Recyclable Fe3O4@C Nanocomposite as Potential Adsorbent for a Wide Range of Organic Dyes and Simulated Hospital Effluents. Environ. Technol. Innov. 2020, 20, 101122. DOI: 10.1016/j.eti.2020.101122.
  • Tran, T. V.; Nguyen, D. T. C.; Le, H. T. N.; Bach, L. G.; Vo, D.-V. N.; Dao, T.-U. T.; Lim, K. T.; Nguyen, T. D. Effect of Thermolysis Condition on Characteristics and Nonsteroidal Anti-inflammatory Drugs (Nsaids) Absorbability of Fe-MIL-88B-derived Mesoporous Carbons. J. Environ. Chem. Eng. 2019, 7, 103356. DOI: 10.1016/j.jece.2019.103356.
  • Hajati, S.; Ghaedi, M.; Mazaheri, H. Removal of Methylene Blue from Aqueous Solution by Walnut Carbon: Optimization Using Response Surface Methodology. Desalin. Water Treat. 2016, 57, 3179–3193. DOI: 10.1080/19443994.2014.981217.
  • Wang, Y. X.; Ngo, H. H.; Guo, W. S. Preparation of a Specific Bamboo Based Activated Carbon and Its Application for Ciprofloxacin Removal. Sci. Total Environ. 2015, 533, 32–39. DOI: 10.1016/j.scitotenv.2015.06.087.
  • Larous, S.; Meniai, A.-H. Adsorption of Diclofenac from Aqueous Solution Using Activated Carbon Prepared from Olive Stones. Int. J. Hydrogen Energy. 2016, 41, 10380–10390.
  • Tenmyo, H.; Sugihara, R.; Ohta, A.; Uematsu, T.; Tsuda, T.; Maruyama, J.; Iwasaki, S.; Uyama, H.; Kuwabata, S. The Capacitor Properties of KOH Activated Porous Carbon Beads Derived from Polyacrylonitrile. Bull. Chem. Soc. Jpn. 2019, 92, 832–839. DOI: 10.1246/bcsj.20180370.
  • Zhao, H.; Cheng, Y.; Lv, H.; Ji, G.; Du, Y. A Novel Hierarchically Porous Magnetic Carbon Derived from Biomass for Strong Lightweight Microwave Absorption. Carbon N. Y. 2019, 142, 245–253. DOI: 10.1016/j.carbon.2018.10.027.
  • Chen, Z.; Huang, T.; Feng, Y.; Hu, W.; Mao, F.; Zhang, C.; Liu, Y.; Fu, Z. Rich and Stable Interlayer Porous Bamboo Carbon Sulfonic Acids Constructed by Silica Intercalation as Cheap and Robust Acid Catalysts. Bull. Chem. Soc. Jpn. 2019, 92, 1824–1833. DOI: 10.1246/bcsj.20190185.
  • Du, W.; Wang, X.; Zhan, J.; Sun, X.; Kang, L.; Jiang, F.; Zhang, X.; Shao, Q.; Dong, M.; Liu, H.; et al. Biological Cell Template Synthesis of Nitrogen-doped Porous Hollow Carbon spheres/MnO2 Composites for High-performance Asymmetric Supercapacitors. Electrochim. Acta. 2019, 296, 907–915. DOI: 10.1016/j.electacta.2018.11.074.
  • Singh, H.; Chauhan, G.; Jain, A. K.; Sharma, S. K. Adsorptive Potential of Agricultural Wastes for Removal of Dyes from Aqueous Solutions. J. Environ. Chem. Eng. 2017, 5, 122–135. DOI: 10.1016/j.jece.2016.11.030.
  • Geçgel, Ü.; Üner, O.; Gökara, G.; Bayrak, Y. Adsorption of Cationic Dyes on Activated Carbon Obtained from Waste Elaeagnus Stone. Adsorpt. Sci. Technol. 2016, 34, 512–525. DOI: 10.1177/0263617416669727.
  • Farahani, M.; Abdullah, S. R. S.; Hosseini, S.; Shojaeipour, S.; Kashisaz, M. Adsorption-based Cationic Dyes Using the Carbon Active Sugarcane Bagasse. Procedia. Environ. Sci. 2011, 10, 203–208. DOI: 10.1016/j.proenv.2011.09.035.
  • García, J. R.; Sedran, U.; Zaini, M. A. A.; Zakaria, Z. A. Preparation, Characterization, and Dye Removal Study of Activated Carbon Prepared from Palm Kernel Shell. Environ. Sci. Pollut. Res. 2018, 25, 5076–5085. DOI: 10.1007/s11356-017-8975-8.
  • Guo, J.-X.; Luo, H.-D.; Shu, S.; Liu, X.-L.; Li, -J.-J.; Chu, Y.-H. Regeneration of Fe Modified Activated Carbon Treated by HNO3 for Flue Gas Desulfurization. Energy Fuels. 2018, 32, 765–776. DOI: 10.1021/acs.energyfuels.7b02588.
  • Gokce, Y.; Aktas, Z. Nitric Acid Modification of Activated Carbon Produced from Waste Tea and Adsorption of Methylene Blue and Phenol. Appl. Surf. Sci. 2014, 313, 352–359. DOI: 10.1016/j.apsusc.2014.05.214.
  • Stavropoulos, G. G.; Samaras, P.; Sakellaropoulos, G. P. Effect of Activated Carbons Modification on Porosity, Surface Structure and Phenol Adsorption. J. Hazard. Mater. 2008, 151, 414–421. DOI: 10.1016/j.jhazmat.2007.06.005.
  • Sadri, R.; Hosseini, M.; Kazi, S. N.; Bagheri, S.; Zubir, N.; Solangi, K. H.; Zaharinie, T.; Badarudin, A. A Bio-based, Facile Approach for the Preparation of Covalently Functionalized Carbon Nanotubes Aqueous Suspensions and Their Potential as Heat Transfer Fluids. J. Colloid Interface Sci. 2017, 504, 115–123. DOI: 10.1016/j.jcis.2017.03.051.
  • Park, M.; Ryu, J.; Kim, Y.; Cho, J. Corn Protein-derived Nitrogen-doped Carbon Materials with Oxygen-rich Functional Groups: A Highly Efficient Electrocatalyst for All-vanadium Redox Flow Batteries. Energy Environ. Sci. 2014, 7, 3727–3735. DOI: 10.1039/C4EE02123A.
  • Tran, T. V.; Nguyen, D. T. C.; Le, H. T. N.; Vo, D.-V. N.; Doan, V.-D.; Dinh, V.-P.; Nguyen, H.-T. T.; Nguyen, T. D.; Bach, L. G. Amino-functionalized MIL-88B(Fe)-based Porous Carbon for Enhanced Adsorption toward Ciprofloxacin Pharmaceutical from Aquatic Solutions. C R Chim. 2019, 22, 804–812. DOI: 10.1016/j.crci.2019.09.003.
  • Centeno, S. A.; Shamir, J. Surface Enhanced Raman Scattering (SERS) and FTIR Characterization of the Sepia Melanin Pigment Used in Works of Art. J. Mol. Struct. 2008, 873, 149–159. DOI: 10.1016/j.molstruc.2007.03.026.
  • Wu, H.; Lu, W.; Chen, Y.; Zhang, P.; Cheng, X. Application of Boehm Titration for the Quantitative Measurement of Soot Oxygen Functional Groups. Energy Fuels. 2020. DOI: 10.1021/acs.energyfuels.0c00904.
  • Tran, T. V.; Nguyen, D. T. C.; Le, H. T. N.; Ho, H. L.; Nguyen, T. T.; Doan, V.-D.; Nguyen, T. D.; Bach, L. G. Response Surface Methodology-optimized Removal of Chloramphenicol Pharmaceutical from Wastewater Using Cu3(BTC)2-derived Porous Carbon as an Efficient Adsorbent. C R Chim. 2019, 22, 794–803. DOI: 10.1016/j.crci.2019.09.004.
  • Ncibi, M. C.; Ranguin, R.; Pintor, M. J.; Jeanne-Rose, V.; Sillanpää, M.; Gaspard, S. Preparation and Characterization of Chemically Activated Carbons Derived from Mediterranean Posidonia Oceanica (L.) Fibres. J. Anal. Appl. Pyrolysis. 2014, 109, 205–214. DOI: 10.1016/j.jaap.2014.06.010.
  • Tran, T. V.; Nguyen, D. T. C.; Le, H. T. N.; Vo, D.-V. N.; Nanda, S.; Nguyen, T. D. Optimization, Equilibrium, Adsorption Behavior and Role of Surface Functional Groups on Graphene Oxide-based Nanocomposite Towards Diclofenac Drug. J. Environ. Sci. 2020, 93, 137–150. DOI: 10.1016/j.jes.2020.02.007.
  • Song, J. Y.; Bhadra, B. N.; Khan, N. A.; Jhung, S. H. Adsorptive Removal of Artificial Sweeteners from Water Using Porous Carbons Derived from Metal Azolate Framework-6. Microporous Mesoporous Mater. 2018, 260, 1–8. DOI: 10.1016/j.micromeso.2017.10.021.
  • Jasni, M. J. F.; Arulkumar, M.; Sathishkumar, P.; Mohd Yusoff, A. R.; Buang, N. A.; Gu, F. L. Electrospun Nylon 6,6 Membrane as A Reusable Nano-adsorbent for Bisphenol A Removal: Adsorption Performance and Mechanism. J. Colloid Interface Sci. 2017, 508, 591–602. DOI: 10.1016/j.jcis.2017.08.075.
  • Wong, S.; Yac’cob, N. A. N.; Ngadi, N.; Hassan, O.; Inuwa, I. M. From Pollutant to Solution of Wastewater Pollution: Synthesis of Activated Carbon from Textile Sludge for Dye Adsorption. Chinese J.Chem. Eng. 2018, 26(4), 870–878. DOI: 10.1016/j.cjche.2017.07.015.
  • Islam, M. A.; Sabar, S.; Benhouria, A.; Khanday, W. A.; Asif, M.; Hameed, B. H. Nanoporous Activated Carbon Prepared from Karanj (Pongamia Pinnata) Fruit Hulls for Methylene Blue Adsorption. J. Taiwan Inst. Chem. Eng. 2017, 74, 96–104. DOI: 10.1016/j.jtice.2017.01.016.
  • Reffas, A.; Bernardet, V.; David, B.; Reinert, L.; Lehocine, M. B.; Dubois, M.; Batisse, N.; Duclaux, L. Carbons Prepared from Coffee Grounds by H3PO4 Activation: Characterization and Adsorption of Methylene Blue and Nylosan Red N-2RBL. J. Hazard. Mater. 2010, 175(1–3), 779–788.
  • Shah, I.; Adnan, R.; Wan Ngah, W. S.; Mohamed, N. Iron Impregnated Activated Carbon as an Efficient Adsorbent for the Removal of Methylene Blue: Regeneration and Kinetics Studies. PLoS One. 2015, 10, e0122603. DOI: 10.1371/journal.pone.0122603.
  • Uysal, T.; Duman, G.; Onal, Y.; Yasa, I.; Yanik, J. Production of Activated Carbon and Fungicidal Oil from Peach Stone by Two-stage Process. J. Anal. Appl. Pyrolysis. 2014, 108, 47–55. DOI: 10.1016/j.jaap.2014.05.017.
  • Tran, T. V.; Nguyen, H.; Le, P. H. A.; Nguyen, D. T. C.; Nguyen, T. T.; Nguyen, C. V.; Vo, D.-V. N.; Nguyen, T. D. Microwave-assisted Solvothermal Fabrication of Hybrid Zeolitic–imidazolate Framework (ZIF-8) for Optimizing Dyes Adsorption Efficiency Using Response Surface Methodology. J. Environ. Chem. Eng. 2020, 8, 104189. DOI: 10.1016/j.jece.2020.104189.
  • Tran, T. V.; Nguyen, V. H.; Nong, L. X.; Nguyen, H.-T.-T.; Nguyen, D. T. C.; Nguyen, T. T.; Nguyen, H. T. T.; Nguyen, T. D. Hexagonal Fe-based MIL-88B Nanocrystals with NH2 Functional Groups Accelerating Oxytetracycline Capture via Hydrogen Bonding. Surf. Interfaces. 2020, 20, 100605. DOI: 10.1016/j.surfin.2020.100605.
  • Moreno‐González, D.; Krulišová, M.; Gámiz‐Gracia, L.; García-Campaña, A. M. Determination of Tetracyclines in Human Urine Samples by Capillary Electrophoresis in Combination with Field Amplified Sample Injection. Electrophoresis. 2018, 39, 608–615. DOI: 10.1002/elps.201700288.
  • Singh, S.; Sidhu, G. K.; Singh, H. Removal of Methylene Blue Dye Using Activated Carbon Prepared from Biowaste Precursor. Indian Chem. Eng. 2017, 61(1), 1–12. DOI: 10.1080/00194506.2017.1408431.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.