128
Views
6
CrossRef citations to date
0
Altmetric
Extraction

Adsorption of synthetic and real Kinetic Hydrate Inhibitors (KHI) wastewaters on activated carbon: adsorption kinetics, isotherms, and optimized conditions

, , ORCID Icon &
Pages 2266-2277 | Received 29 Feb 2020, Accepted 04 Sep 2020, Published online: 16 Sep 2020

References

  • Lee, J. D.; Englezos, P. Enhancement of the Performance of Gas Hydrate Kinetic Inhibitors with Polyethylene Oxide. Chem. Eng. Sci. 2005, 60(19), 5323–5330. DOI: 10.1016/j.ces.2005.05.023.
  • Kelland, M. A.;. History of the Development of Low Dosage Hydrate Inhibitors. Energy Fuels. 2006, 20(3), 825–847. DOI: 10.1021/ef050427x.
  • Tohidikaloorazy, F. Fundamental Controls on Kinetic Hydrate Inhibitor Performance and Polymer Removal from Produced Waters; Heriot-Watt University: Edinburgh, Scotland, United Kingdom, 2016.
  • Kelland, M. A.; Svartaas, T. M.; Øvsthus, J.; Tomita, T.; Chosa, J.-I. Studies on Some Zwitterionic Surfactant Gas Hydrate Anti-agglomerants. Chem. Eng. Sci. 2006, 61(12), 4048–4059. DOI: 10.1016/j.ces.2006.02.003.
  • Golpour, M.; Pakizeh, M. Preparation and Characterization of New PA-MOF/PPSU-GO Membrane for the Separation of KHI from Water. Chem. Eng. J. 2018, 345, 221–232. DOI: 10.1016/j.cej.2018.03.154.
  • Golpour, M.; Pakizeh, M. Development of a New Nanofiltration Membrane for Removal of Kinetic Hydrate Inhibitor from Water. Sep. Purif. Technol. 2017, 183, 237–248. DOI: 10.1016/j.seppur.2017.04.011.
  • Adham, S.; Gharfeh, S.; Hussain, A.; Minier-Matar, J.; Janson, A. Kinetic Hydrate Inhibitor Removal by Physical, Chemical and Biological Processes. In Offshore Technology Conference-Asia; Offshore Technology Conference: USA, 2014.
  • Mohagheghian, A.; Vahidi-Kolur, R.; Pourmohseni, M.; Yang, J.-K.; Shirzad-Siboni, M. Application of Scallop shell-Fe 3 O 4 Nano-composite for the Removal Azo Dye from Aqueous Solutions. Water, Air, Soil Pollut. 2015, 226(9), 321. DOI: 10.1007/s11270-015-2539-7.
  • Shirzad-Siboni, M.; Jafari, S.-J.; Farrokhi, M.; Yang, J. K.; Shirzad-Siboni, M.; Jafari, S.-J.; Farrokhi, M.; Yang, J. K. Removal of Phenol from Aqueous Solutions by Activated Red Mud: Equilibrium and Kinetics Studies. Environ. Eng. Res. 2013, 18(4), 247–252. DOI: 10.4491/eer.2013.18.4.247.
  • Yagub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. DOI: 10.1016/j.cis.2014.04.002.
  • Crini, G.;. Non-conventional Low-cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97(9), 1061–1085. DOI: 10.1016/j.biortech.2005.05.001.
  • Allen, S.; Koumanova, B. Decolourisation of Water/wastewater Using Adsorption. J. Univ. Chem. Technol. Metall. 2005, 40(3), 175–192.
  • Chua, P. C.; Kelland, M. A. Poly (N-vinyl Azacyclooctanone): A More Powerful Structure Ii Kinetic Hydrate Inhibitor than Poly (N-vinyl Caprolactam). Energy Fuels. 2012, 26(7), 4481–4485. DOI: 10.1021/ef300688x.
  • Israel, L.; Güler, Ç.; Yilmaz, H.; Güler, S. The Adsorption of Polyvinylpyrrolidone on Kaolinite Saturated with Sodium Chloride. J. Colloid Interface Sci. 2001, 238(1), 80–84. DOI: 10.1006/jcis.2001.7465.
  • Bhatti, Q. A.; Baloch, M. K.; Schwarz, S.; Petzold, G. Impact of Various Parameters over the Adsorption of Polyvinylpyrrolidone onto Kaolin. J. Dispersion Sci. Technol. 2012, 33(12), 1739–1745. DOI: 10.1080/01932691.2011.629530.
  • Abidi, N.; Errais, E.; Duplay, J.; Berez, A.; Jrad, A.; Schäfer, G.; Ghazi, M.; Semhi, K.; Trabelsi-Ayadi, M. Treatment of Dye-containing Effluent by Natural Clay. J. Cleaner Prod. 2015, 86, 432–440. DOI: 10.1016/j.jclepro.2014.08.043.
  • Luukkonen, T.; Tolonen, E.-T.; Runtti, H.; Pellinen, J.; Hu, T.; Rämö, J.; Lassi, U. Removal of Total Organic Carbon (TOC) Residues from Power Plant Make-up Water by Activated Carbon. J. Water Process Eng. 2014, 3, 46–52. DOI: 10.1016/j.jwpe.2014.08.005.
  • Kılıç, A.; Orhan, R. Removal of Cationic Dyes by Adsorption in a Single and Binary System Using Activated Carbon Prepared from the Binary Mixture. Sep. Sci. Technol. 2019, 54(14), 2147–2163. DOI: 10.1080/01496395.2019.1636068.
  • Guillossou, R.; Le Roux, J.; Mailler, R.; Vulliet, E.; Morlay, C.; Nauleau, F.; Gasperi, J.; Rocher, V. Organic Micropollutants in a Large Wastewater Treatment Plant: What are the Benefits of an Advanced Treatment by Activated Carbon Adsorption in Comparison to Conventional Treatment? Chemosphere. 2019, 218, 1050–1060. DOI: 10.1016/j.chemosphere.2018.11.182.
  • Demiral, H.; Güngör, C. Adsorption of copper(II) from Aqueous Solutions on Activated Carbon Prepared from Grape Bagasse. J. Cleaner Prod. 2016, 124, 103–113. DOI: 10.1016/j.jclepro.2016.02.084.
  • Qu, W.; Yuan, T.; Yin, G.; Xu, S.; Zhang, Q.; Su, H. Effect of Properties of Activated Carbon on Malachite Green Adsorption. Fuel. 2019, 249, 45–53. DOI: 10.1016/j.fuel.2019.03.058.
  • Ocreto, J.; Go, C. I.; Chua, J. C.; Apacible, C. J.; Vilando, A. Competitive Effects for the Adsorption of Copper, Cadmium and Lead Ions Using Modified Activated Carbon from Bambo. In MATEC Web of Conferences; EDP Sciences: France, 2019; Vol. 268, p 06021.
  • Roy, R. K. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement; John Wiley & Sons: New York, 2001.
  • Rahman, M. S.; Islam, M. R. Effects of pH on Isotherms Modeling for Cu (II) Ions Adsorption Using Maple Wood Sawdust. Chem. Eng. J. 2009, 149(1–3), 273–280. DOI: 10.1016/j.cej.2008.11.029.
  • Zolgharnein, J.; Asanjarani, N.; Shariatmanesh, T. Taguchi L16 Orthogonal Array Optimization for Cd (II) Removal Using Carpinus Betulus Tree Leaves: Adsorption Characterization. Int. Biodeterior. Biodegrad. 2013, 85, 66–77. DOI: 10.1016/j.ibiod.2013.06.010.
  • Singha, A.; Guleria, A. Chemical Modification of Cellulosic Biopolymer and Its Use in Removal of Heavy Metal Ions from Wastewater. Int. J. Biol. Macromol. 2014, 67, 409–417. DOI: 10.1016/j.ijbiomac.2014.03.046.
  • Zhu, H.-X.; Cao, X.-J.; He, Y.-C.; Kong, Q.-P.; He, H.; Wang, J. Removal of Cu2+ from Aqueous Solutions by the Novel Modified Bagasse Pulp Cellulose: Kinetics, Isotherm and Mechanism. Carbohydr. Polym. 2015, 129, 115–126. DOI: 10.1016/j.carbpol.2015.04.049.
  • Galangash, M. M.; Kolkasaraei, Z. N.; Ghavidast, A.; Shirzad-Siboni, M. Facile Synthesis of Methyl Propylaminopropanoate Functionalized Magnetic Nanoparticles for Removal of Acid Red 114 from Aqueous Solution. RSC Adv. 2016, 6(114), 113492–113502. DOI: 10.1039/C6RA22710D.
  • Enniya, I.; Rghioui, L.; Jourani, A. Adsorption of Hexavalent Chromium in Aqueous Solution on Activated Carbon Prepared from Apple Peels. Sustainable Chem. Pharm. 2018, 7, 9–16. DOI: 10.1016/j.scp.2017.11.003.
  • Chen, S.; Zhang, J.; Zhang, C.; Yue, Q.; Li, Y.; Li, C. Equilibrium and Kinetic Studies of Methyl Orange and Methyl Violet Adsorption on Activated Carbon Derived from Phragmites Australis. Desalination. 2010, 252(1–3), 149–156. DOI: 10.1016/j.desal.2009.10.010.
  • Elkady, M.; Ibrahim, A. M.; El-Latif, M. A. Assessment of the Adsorption Kinetics, Equilibrium and Thermodynamic for the Potential Removal of Reactive Red Dye Using Eggshell Biocomposite Beads. Desalination. 2011, 278(1–3), 412–423. DOI: 10.1016/j.desal.2011.05.063.
  • Li, W.; Zhang, L.; Peng, J.; Li, N.; Zhang, S.; Guo, S. Tobacco Stems as a Low Cost Adsorbent for the Removal of Pb (II) from Wastewater: Equilibrium and Kinetic Studies. Ind. Crops Prod. 2008, 28(3), 294–302.
  • Gheju, M.; Balcu, I.; Mosoarca, G. Removal of Cr (VI) from Aqueous Solutions by Adsorption on MnO2. J. Hazard. Mater. 2016, 310, 270–277. DOI: 10.1016/j.jhazmat.2016.02.042.
  • Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H. Adsorption of Cadmium from Aqueous Solution onto Untreated Coffee Grounds: Equilibrium, Kinetics and Thermodynamics. J. Hazard. Mater. 2010, 184(1–3), 126–134. DOI: 10.1016/j.jhazmat.2010.08.014.
  • Galangash, M. M.; Montazeri, M. M.; Ghavidast, A.; Shirzad‐Siboni, M. Synthesis of Carboxyl‐functionalized Magnetic Nanoparticles for Adsorption of Malachite Green from Water: Kinetics and Thermodynamics Studies. J. Chin. Chem. Soc. 2018, 65(8), 940–950. DOI: 10.1002/jccs.201700361.
  • Nigam, M.; Rajoriya, S.; Singh, S. R.; Kumar, P. Adsorption of Cr (VI) Ion from Tannery Wastewater on Tea Waste: Kinetics, Equilibrium and Thermodynamics Studies. J. Environ. Chem. Eng. 2019, 7(3), 103188. DOI: 10.1016/j.jece.2019.103188.
  • Zolfaghari, G.; Esmaili-Sari, A.; Anbia, M.; Younesi, H.; Amirmahmoodi, S.; Ghafari-Nazari, A. Taguchi Optimization Approach for Pb (II) and Hg (II) Removal from Aqueous Solutions Using Modified Mesoporous Carbon. J. Hazard. Mater. 2011, 192(3), 1046–1055. DOI: 10.1016/j.jhazmat.2011.06.006.
  • Hadi, P.; To, M.-H.; Hui, C.-W.; Lin, C. S. K.; McKay, G. Aqueous Mercury Adsorption by Activated Carbons. Water Res. 2015, 73, 37–55. DOI: 10.1016/j.watres.2015.01.018.
  • Ofomaja, A.; Naidoo, E.; Modise, S. Removal of Copper (II) from Aqueous Solution by Pine and Base Modified Pine Cone Powder as Biosorbent. J. Hazard. Mater. 2009, 168(2–3), 909–917. DOI: 10.1016/j.jhazmat.2009.02.106.
  • Laabd, M.; Chafai, H.; Essekri, A.; Elamine, M.; Al-Muhtaseb, S.; Lakhmiri, R.; Albourine, A. Single and Multi-component Adsorption of Aromatic Acids Using an Eco-friendly Polyaniline-based Biocomposite. Sustain. Mater. Technol. 2017, 12, 35–43. DOI: 10.1016/j.susmat.2017.04.004.
  • Mouni, L.; Belkhiri, L.; Bollinger, J.-C.; Bouzaza, A.; Assadi, A.; Tirri, A.; Dahmoune, F.; Madani, K.; Remini, H. Removal of Methylene Blue from Aqueous Solutions by Adsorption on Kaolin: Kinetic and Equilibrium Studies. Appl. Clay Sci. 2018, 153, 38–45. DOI: 10.1016/j.clay.2017.11.034.
  • Langmuir, I.;. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40(9), 1361–1403.
  • Saleh, T. A.; Danmaliki, G. I. Adsorptive Desulfurization of Dibenzothiophene from Fuels by Rubber Tyres-derived Carbons: Kinetics and Isotherms Evaluation. Process Saf. Environ. Prot. 2016, 102, 9–19. DOI: 10.1016/j.psep.2016.02.005.
  • Freundlich, H.;. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57(385471), 1100–1107.
  • Angin, D.;. Utilization of Activated Carbon Produced from Fruit Juice Industry Solid Waste for the Adsorption of Yellow 18 from Aqueous Solutions. Bioresour. Technol. 2014, 168, 259–266. DOI: 10.1016/j.biortech.2014.02.100.
  • Tempkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalyst. Acta Phys. Chim. USSR. 1940, 12(1), 327.
  • Lagergren, S. K.;. About the Theory of So-called Adsorption of Soluble Substances. Sven. Vetenskapsakad. Handingarl. 1898, 24, 1–39.
  • Ho, Y.; Ng, J.; McKay, G. Kinetics of Pollutant Sorption by Biosorbents. Sep. Purif. Methods. 2000, 29(2), 189–232. DOI: 10.1081/SPM-100100009.
  • Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanitary Eng. Div. 1963, 89(2), 31–60.
  • Nodehi, R.; Shayesteh, H.; Kelishami, A. R. Enhanced Adsorption of Congo Red Using Cationic Surfactant Functionalized Zeolite Particles. Microchem. J. 2020, 153, 104281. DOI: 10.1016/j.microc.2019.104281.
  • Laabd, M.; Ahsaine, H. A.; El Jaouhari, A.; Bakiz, B.; Bazzaoui, M.; Ezahri, M.; Albourine, A.; Benlhachemi, A. Congo Red Removal by PANi/Bi2WO6 Nanocomposites: Kinetic, Equilibrium and Thermodynamic Studies. J. Environ. Chem. Eng. 2016, 4(3), 3096–3105. DOI: 10.1016/j.jece.2016.06.024.
  • Huang, T.; Yan, M.; He, K.; Huang, Z.; Zeng, G.; Chen, A.; Peng, M.; Li, H.; Yuan, L.; Chen, G. Efficient Removal of Methylene Blue from Aqueous Solutions Using Magnetic Graphene Oxide Modified Zeolite. J. Colloid Interface Sci. 2019, 543, 43–51. DOI: 10.1016/j.jcis.2019.02.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.