355
Views
8
CrossRef citations to date
0
Altmetric
Water treatment

Comparison of COD removal from petrochemical wastewater by electro-Fenton and electro oxidation processes: optimization and kinetic analyses

ORCID Icon, , , &
Pages 2300-2309 | Received 18 Apr 2020, Accepted 07 Sep 2020, Published online: 05 Oct 2020

References

  • Cheng, S. S.; Ho, C. Y.; Wu, J. H. Pilot Study of UASB Process Treating PTA Manufacturing Wastewater. Water Sci. Technol. 1997, 36, 73–82. DOI: 10.1016/S0273-1223(97)00509-X.
  • Macarie, H.; Noyola, A.; Guyot, J. P. Anaerobic Treatment of a Petrochemical Wastewater from a Terephthalic Acid Plant. Water Sci. Technol. 1992, 25(7), 223–235. DOI: 10.2166/wst.1992.0154.
  • Kleerebezem, R.; Mortier, J.; Pol, L. W. H.; Lettinga, G. Anaerobic Pre-treatment of Petrochemical Effluents: Terephthalic Acid Wastewater. Water Sci. Technol. 1997, 36(2–3), 237–248. DOI: 10.1016/S0273-1223(97)00393-4.
  • Kleerebezem, R.; Beckers, J.; Hulshoff Pol, L. W.; Lettinga, G. High Rate Treatment of Terephthalic Acid Production Wastewater in a Two‐stage Anaerobic Bioreactor. Biotechnol. Bioeng. 2005, 91(2), 169–179. DOI: 10.1002/bit.20502.
  • Pophali, G. R.; Khan, R.; Dhodapkar, R. S.; Nandy, T.; Devotta, S. Anaerobic–aerobic Treatment of Purified Terephthalic Acid (PTA) Effluent; a Techno-economic Alternative to Two-stage Aerobic Process. J. Environ. Manage. 2007, 85(4), 1024–1033. DOI: 10.1016/j.jenvman.2006.11.016.
  • Wittcoff, H. A.; Reuben, B. G.; Plotkin, J. S. Industrial Organic Chemicals; John Wiley & Sons, Hoboken, New Jersey, 2012.
  • Fu, F.; Wang, Q.; Tang, B. Effective Degradation of CI Acid Red 73 by Advanced Fenton Process. J. Hazard. Mater. 2010, 174(1–3). DOI: 10.1016/j.jhazmat.2009.09.009.
  • Cañizares, P.; Beteta, A.; Sáez, C.; Rodríguez, L.; Rodrigo, M. A. Use of Electrochemical Technology to Increase the Quality of the Effluents of Bio-oxidation Processes. A Case Studied. Chemosphere. 2008, 72(7), 1080–1085. DOI: 10.1016/j.chemosphere.2008.04.004.
  • da Silva, A. J. C.; Dos Santos, E. V.; de Oliveira Morais, C. C.; Martínez-Huitle, C. A.; Castro, S. S. L. Electrochemical Treatment of Fresh, Brine and Saline Produced Water Generated by Petrochemical Industry Using Ti/IrO2–Ta2O5 and BDD in Flow Reactor. Chem. Eng. J. 2013, 233, 47–55. DOI: 10.1016/j.cej.2013.08.023.
  • Palahouane, B.; Drouiche, N.; Aoudj, S.; Bensadok, K. Cost-effective Electrocoagulation Process for the Remediation of Fluoride from Pretreated Photovoltaic Wastewater. J. Ind. Eng. Chem. 2015, 22, 127–131. DOI: 10.1016/j.jiec.2014.06.033.
  • Gökkuş, Ö. Oxidative Degradation of Basic Black 3 by Electro-generated Fenton’s Reagent Using Carbon Fiber Cathode. Clean Technol. Environ. Policy. 2016, 18(5), 1525–1534. DOI: 10.1007/s10098-016-1134-y.
  • Dos Santos, E. V.; Rocha, J. H. B.; de Araújo, D. M.; de Moura, D. C.; Martínez-Huitle, C. A. Decontamination of Produced Water Containing Petroleum Hydrocarbons by Electrochemical Methods: A Minireview. Environ. Sci. Pollut. Res. 2014, 21(14), 8432–8441. DOI: 10.1007/s11356-014-2780-4.
  • Maljaei, A.; Arami, M.; Mahmoodi, N. M. Decolorization and Aromatic Ring Degradation of Colored Textile Wastewater Using Indirect Electrochemical Oxidation Method. Desalination. 2009, 249(3), 1074–1078. DOI: 10.1016/j.desal.2009.05.016.
  • Linares-Hernández, I.; Barrera-Díaz, C.; Bilyeu, B.; Juárez-GarcíaRojas, P.; Campos-Medina, E. A Combined Electrocoagulation–electrooxidation Treatment for Industrial Wastewater. J. Hazard. Mater. 2010, 175(1–3), 688–694. DOI: 10.1016/j.jhazmat.2009.10.064.
  • Mondal, B.; Srivastava, V. C.; Mall, I. D. Electrochemical Treatment of Dye-bath Effluent by Stainless Steel Electrodes: Multiple Response Optimization and Residue Analysis. J. Environ. Sci. Health A. 2012, 47(13), 2040–2051. DOI: 10.1080/10934529.2012.695675.
  • Xiong, Y.; Karlsson, H. T. An Experimental Investigation of Chemical Oxygen Demand Removal from the Wastewater Containing Oxalic Acid Using Three-phase Three-dimensional Electrode Reactor. Adv. Environ. Res. 2002, 7(1), 139–145. DOI: 10.1016/S1093-0191(01)00124-1.
  • Zhou, M.; Lei, L. The Role of Activated Carbon on the Removal of P-nitrophenol in an Integrated Three-phase Electrochemical Reactor. Chemosphere. 2006, 65(7), 1197–1203. DOI: 10.1016/j.chemosphere.2006.03.054.
  • Raju, G. B.; Karuppiah, M. T.; Latha, S. S.; Parvathy, S.; Prabhakar, S. Treatment of Wastewater from Synthetic Textile Industry by Electrocoagulation–electrooxidation. Chem. Eng. J. 2008, 144(1), 51–58. DOI: 10.1016/j.cej.2008.01.008.
  • Bagotsky, V. S., Ed.. Fundamentals of Electrochemistry; John Wiley & Sons, Hoboken, New Jersey, 2005; Vol. 44.
  • Yong, K. O. N. G.; Wang, Z. L.; Yu, W. A. N. G.; Jia, Y. U. A. N.; Chen, Z. D. Degradation of Methyl Orange in Artificial Wastewater through Electrochemical Oxidation Using Exfoliated Graphite Electrode. New Carbon Mater. 2011, 26(6), 459–464. DOI: 10.1016/S1872-5805(11)60092-9.
  • Brillas, E.; Sirés, I.; Oturan, M. A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem. Rev. 2009, 109(12), 6570–6631. DOI: 10.1021/cr900136g.
  • Li, J.; Ai, Z.; Zhang, L. Design of a Neutral electro-Fenton System with Fe@ Fe2O3/ACF Composite Cathode for Wastewater Treatment. J. Hazard. Mater. 2009, 164(1), 18–25. DOI: 10.1016/j.jhazmat.2008.07.109.
  • Neyens, E.; Baeyens, J. A Review of Classic Fenton’s Peroxidation as an Advanced Oxidation Technique. J. Hazard. Mater. 2003, 98(1–3), 33–50. DOI: 10.1016/S0304-3894(02)00282-0.
  • Ma, J.; Song, W.; Chen, C.; Ma, W.; Zhao, J.; Tang, Y. Fenton Degradation of Organic Compounds Promoted by Dyes under Visible Irradiation. Environ. Sci. Technol. 2005, 39(15), 5810–5815. DOI: 10.1021/es050001x.
  • Gökkuş, Ö.; Yıldız, Y. Ş. Application of Electrocoagulation for Treatment of Medical Waste Sterilization Plant Wastewater and Optimization of the Experimental Conditions. Clean Technol. Environ. Policy. 2015, 17(6), 1717–1725. DOI: 10.1007/s10098-014-0897-2.
  • Sirés, I.; Brillas, E.; Oturan, M. A.; Rodrigo, M. A.; Panizza, M. Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review. Environ. Sci. Pollut. Res. 2014, 21(14), 8336–8367.
  • Brillas, E.; Martínez-Huitle, C. A. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. An Updated Review. Appl. Catal. B Environ. 2015, 166, 603–643. DOI: 10.1016/j.apcatb.2014.11.016.
  • Panizza, M.; Cerisola, G. Direct and Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 2009, 109(12), 6541–6569. DOI: 10.1021/cr9001319.
  • Martínez-Huitle, C. A.; Panizza, M. Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment. Curr. Opin. Electrochem. 2018, 11, 62–71. DOI: 10.1016/j.coelec.2018.07.010.
  • Emamjomeh, M. M.; Sivakumar, M. Review of Pollutants Removed by Electrocoagulation and Electrocoagulation/flotation Processes. J. Environ. Manage. 2009, 90(5), 1663–1679. DOI: 10.1016/j.jenvman.2008.12.011.
  • Atmaca, E. Treatment of Landfill Leachate by Using electro-Fenton Method. J. Hazard. Mater. 2009, 163(1), 109–114. DOI: 10.1016/j.jhazmat.2008.06.067.
  • Sandhwar, V. K.; Prasad, B. A Comparative Study of Electrochemical Degradation of Benzoic Acid and Terephthalic Acid from Aqueous Solution of Purified Terephthalic Acid (PTA) Wastewater. J. Water Process Eng. 2019, 30, 100381. DOI: 10.1016/j.jwpe.2017.03.006.
  • Smith, M. A. A Consideration of Graphite Electrodes. IEEE Trans. Ind. Appl. IA. 1982, 18(4), 431–434.
  • Busca, G.; Berardinelli, S.; Resini, C.; Arrighi, L. Technologies for the Removal of Phenol from Fluid Streams: A Short Review of Recent Developments. J. Hazard. Mater. 2008, 160(2–3), 265–288. DOI: 10.1016/j.jhazmat.2008.03.045.
  • Chen, G. Electrochemical Technologies in Wastewater Treatment. Sep. Purif. Technol. 2004, 38(1), 11–41. DOI: 10.1016/j.seppur.2003.10.006.
  • Mohajeri, S.; Aziz, H. A.; Isa, M. H.; Zahed, M. A.; Adlan, M. N. Statistical Optimization of Process Parameters for Landfill Leachate Treatment Using electro-Fenton Technique. J. Hazard. Mater. 2010, 176(1–3), 749–758. DOI: 10.1016/j.jhazmat.2009.11.099.
  • Garcia-Segura, S.; Almeida, L. C.; Bocchi, N.; Brillas, E. Solar photoelectro-Fenton Degradation of the Herbicide 4-chloro-2-methylphenoxyacetic Acid Optimized by Response Surface Methodology. J. Hazard. Mater. 2011, 194, 109–118. DOI: 10.1016/j.jhazmat.2011.07.089.
  • Virkutyte, J.; Rokhina, E.; Jegatheesan, V. Optimisation of Electro-Fenton Denitrification of a Model Wastewater Using a Response Surface Methodology. Bioresour. Technol. 2010, 101(5), 1440–1446. DOI: 10.1016/j.biortech.2009.10.041.
  • Azami, M.; Bahram, M.; Nouri, S.; Naseri, A. Central Composite Design for the Optimization of Removal of the Azo Dye, Methyl Orange, from Waste Water Using Fenton Reaction. J. Serb. Chem. Soc. 2012, 77(2), 235–246. DOI: 10.2298/JSC110315165A.
  • Verma, S.; Prasad, B.; Mishra, I. M. Treatment of Petrochemical Wastewater by Acid Precipitation and Carbon Adsorption. J. Hazard. Toxic Radioact. Waste. 2014, 18(3), 04014013. DOI: 10.1061/(ASCE)HZ.2153-5515.0000219.
  • Anand, M. V.; Srivastava, V. C.; Singh, S.; Bhatnagar, R.; Mall, I. D. Electrochemical Treatment of Alkali Decrement Wastewater Containing Terephthalic Acid Using Iron Electrodes. J. Taiwan Inst. Chem. Eng. 2014, 45(3), 908–913. DOI: 10.1016/j.jtice.2013.08.010.
  • Marashi, S. K. F.; Kariminia, H. R.; Savizi, I. S. P. Bimodal Electricity Generation and Aromatic Compounds Removal from Purified Terephthalic Acid Plant Wastewater in a Microbial Fuel Cell. Biotechnol. Lett. 2013, 35(2), 197–203. DOI: 10.1007/s10529-012-1063-8.
  • American Public Health Association, American Water Works Association, Water Pollution Control Federation, & Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; American Public Health Association, Washington, D.C, 1920.
  • Garg, K. K.; Prasad, B. Electrochemical Treatment of Benzoic Acid (BA) from Aqueous Solution and Optimization of Parameters by Response Surface Methodology (RSM). J. Taiwan Inst. Chem. Eng. 2015, 56, 122–130. DOI: 10.1016/j.jtice.2015.04.005.
  • Verma, S.; Prasad, B.; Mishra, I. M. Thermochemical Treatment (Thermolysis) of Petrochemical Wastewater: COD Removal Mechanism and Floc Formation. Ind. Eng. Chem. Res. 2011, 50(9), 5352–5359. DOI: 10.1021/ie102576w.
  • Chen, X.; Chen, G.; Yue, P. L. Anodic Oxidation of Dyes at Novel Ti/B-diamond Electrodes. Chem. Eng. Sci. 2003, 58(3–6), 995–1001. DOI: 10.1016/S0009-2509(02)00640-1.
  • Zhou, M.; Yu, Q.; Lei, L.; Barton, G. Electro-Fenton Method for the Removal of Methyl Red in an Efficient Electrochemical System. Sep. Purif. Technol. 2007, 57(2), 380–387. DOI: 10.1016/j.seppur.2007.04.021.
  • Lee, H.; Shoda, M. Removal of COD and Color from Livestock Wastewater by the Fenton Method. J. Hazard. Mater. 2008, 153(3), 1314–1319. DOI: 10.1016/j.jhazmat.2007.09.097.
  • Nidheesh, P. V.; Gandhimathi, R. Trends in electro-Fenton Process for Water and Wastewater Treatment: An Overview. Desalination. 2012, 299, 1–15. DOI: 10.1016/j.desal.2012.05.011.
  • Sankara Narayanan, T. S. N.; Magesh, G.; Rajendran, N. Degradation of O-chlorophenol from Aqueous Solution by electro-Fenton Process. Fresenius Environ. Bull. 2003, 12(7), 776–780.
  • Phalakornkule, C.; Polgumhang, S.; Tongdaung, W.; Karakat, B.; Nuyut, T. Electrocoagulation of Blue Reactive, Red Disperse and Mixed Dyes, and Application in Treating Textile Effluent. J. Environ. Manage. 2010, 91(4), 918–926. DOI: 10.1016/j.jenvman.2009.11.008.
  • Mameri, N.; Yeddou, A. R.; Lounici, H.; Belhocine, D.; Grib, H.; Bariou, B. Defluoridation of Septentrional Sahara Water of North Africa by Electrocoagulation Process Using Bipolar Aluminium Electrodes. Water Res. 1998, 32(5), 1604–1612. DOI: 10.1016/S0043-1354(97)00357-6.
  • Modirshahla, N.; Behnajady, M. A.; Mohammadi-Aghdam, S. Investigation of the Effect of Different Electrodes and Their Connections on the Removal Efficiency of 4-nitrophenol from Aqueous Solution by Electrocoagulation. J. Hazard. Mater. 2008, 154(1–3), 778–786. DOI: 10.1016/j.jhazmat.2007.10.120.
  • Sandhwar, V. K.; Prasad, B. Comparison of Phthalic Acid Removal from Aqueous Solution by Electrochemical Methods: Optimization, Kinetic and Sludge Study. J. Environ. Manage. 2017, 203, 476–488. DOI: 10.1016/j.jenvman.2017.08.022.
  • Sandhwar, V. K.; Prasad, B. Terephthalic Acid Removal from Aqueous Solution by Electrocoagulation and electro-Fenton Methods: Process Optimization through Response Surface Methodology. Process Saf. Environ. Prot. 2017, 107, 269–280. DOI: 10.1016/j.psep.2017.02.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.