207
Views
8
CrossRef citations to date
0
Altmetric
Adsorption

Selectivity of Th(IV) adsorption as compared to U(VI), La(III), Ce(III), Sm(III) and Gd(III) using mesoporous Al2O3

, &
Pages 2369-2384 | Received 07 Feb 2020, Accepted 21 Sep 2020, Published online: 22 Oct 2020

References

  • Berry, L.; Galvin, J.; Agarwal, V.; Safarzadeh, M. S. Alkali Pug Bake Process for the Decomposition of Monazite Concentrates. Miner. Eng. 2017, 109, 32–41. DOI: 10.1016/j.mineng.2017.02.007.
  • Raju, C. S. K.; Subramanian, M. S. A Novel Solid Phase Extraction Method for Separation of Actinides and Lanthanides from High Acidic Streams. Sep. Purif. Technol. 2007, 55(1), 16–22. DOI: 10.1016/j.seppur.2006.10.013.
  • Khazaei, Y.; Faghihian, H.; Kamali, M. Removal of Thorium from Aqueous Solutions by Sodium Clinoptilolite. J. Radioanal. Nucl. Chem. 2011, 289(2), 529–536. DOI: 10.1007/s10967-011-1100-4.
  • Zhang, S.; Liu, P.; Zhang, B. Thorium Resources and Their Availability. World Nucl. Geosci. 2005, 22(2), 98–103.
  • Kamei, T.; Hakami, S. Evaluation of Implementation of Thorium Fuel Cycle with LWR and MSR. Prog. Nucl. Energy. 2011, 53(7), 820–824. DOI: 10.1016/j.pnucene.2011.05.032.
  • Hadjittofi, L.; Pashalidis, I. Thorium Removal from Acidic Aqueous Solutions by Activated Biochar Derived from Cactus Fibers. Desalin. Water Treat. 2016, 57(57), 27864–27868. DOI: 10.1080/19443994.2016.1168580.
  • Ryabchikov, D. I.; Gol’braikh, E. K. The Analytical Chemistry of Thorium; Pergamon, UK, 1963. https://doi.org/10.1016/C2013-0-02287-6, ISBN 978-0-08-013737-7
  • Sadahira, Y.; Mori, M.; Nakamoto, S.; Awai, M.; Mori, T. Lung Cancer in a Thorotrast Administered Patient. Pathol. Int. 1985, 35(6), 1467–1473.
  • Osmanlioglu, A. E.;. Decontamination of Radioactive Wastewater by Two-staged Chemical Precipitation. Nucl. Eng. Tech. 2018, 50(6), 886–889. DOI: 10.1016/j.net.2018.04.009.
  • Lin, C.; Wang, H.; Wang, Y.; Cheng, Z. Selective Solid-phase Extraction of Trace Thorium (IV) Using Surface-grafted Th (IV)-imprinted Polymers with Pyrazole Derivative. Talanta. 2010, 81(1–2), 30–36. DOI: 10.1016/j.talanta.2009.11.032.
  • Shaeri, M.; Torab-Mostaedi, M.; Kelishami, A. R. Solvent Extraction of Thorium from Nitrate Medium by TBP, Cyanex272 and Their Mixture. J. Radioanal. Nucl. Chem. 2015, 303(3), 2093–2099. DOI: 10.1007/s10967-014-3718-5.
  • Kedari, C. S.; Pandit, S. S.; Gandhi, P. M. Separation by Competitive Transport of Uranium (VI) and Thorium (IV) Nitrates across Supported Renewable Liquid Membrane Containing Trioctylphosphine Oxide as Metal Carrier. J. Membr. Sci. 2013, 430, 188–195. DOI: 10.1016/j.memsci.2012.12.017.
  • Zhou, L.; Wang, Y.; Zou, H.; Liang, X.; Zeng, K.; Liu, Z.; Adesina, A. A. Biosorption Characteristics of Uranium (VI) and Thorium (IV) Ions from Aqueous Solution Using CaCl2-modified Giant Kelp Biomass. J. Radioanal. Nucl. Chem. 2016, 307(1), 635–644. DOI: 10.1007/s10967-015-4166-6.
  • Korkisch, J.; Tera, F. Anion Exchange Separation of Thorium from Uranium. J. Chromatogr. A. 1961, 6, 530–534.
  • Yavari, R.; Asadollahi, N.; Mohsen, M. A. Preparation, Characterization and Evaluation of a Hybrid Material Based on Multiwall Carbon Nanotubes and Titanium Dioxide for the Removal of Thorium from Aqueous Solution. Prog. Nucl. Energy. 2017, 100, 183–191. DOI: 10.1016/j.pnucene.2017.06.009.
  • Anirudhan, T. S.; Rejeena, S. R. Thorium (IV) Removal and Recovery from Aqueous Solutions Using Tannin-modified Poly (Glycidylmethacrylate)-grafted Zirconium Oxide Densified Cellulose. Ind. Eng. Chem. Res. 2011, 50(23), 13288–13298. DOI: 10.1021/ie2015679.
  • Xu, J.; Zhou, L.; Jia, Y.; Liu, Z.; Adesina, A. A. Adsorption of Thorium (IV) Ions from Aqueous Solution by Magnetic Chitosan Resins Modified with Triethylene-tetramine. J. Radioanal. Nucl. Chem. 2015, 303(1), 347–356. DOI: 10.1007/s10967-014-3227-6.
  • Talip, Z.; Eral, M.; Hiçsönmez, Ü. Adsorption of Thorium from Aqueous Solutions by Perlite. J. Environ. Radioact. 2009, 100(2), 139–143. DOI: 10.1016/j.jenvrad.2008.09.004.
  • Gado, M.; Zaki, S. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate. Int. J. Waste Resour. 2016, 6, 1. DOI: 10.4172/2252-5211.1000194.
  • Weijuan, L.; Zuyi, T. Comparative Study on Th(IV) Sorption on Alumina and Silica from Aqueous Solutions. J. Radioanal. Nucl. Chem. 2002, 254(1), 187–192. DOI: 10.1023/A:1020874405480.
  • Huang, Y.; Hu, Y.; Chen, L.; Yang, T.; Huang, H.; Shi, R.; Lu, P.; Zhong, C. Selective Biosorption of Thorium (IV) from Aqueous Solutions by Ginkgo Leaf. PloS One. 2018, 13(3), e0193659. DOI: 10.1371/journal.pone.0193659.
  • Yuan, D.; Zhang, S.; Tan, J.; Dai, Y.; Wang, Y.; Hea, Y.; Li, Y.; Zhao, X.; Zhang, M.; Zhang, Q. Highly Efficacious Entrapment of Th (IV) and U (VI) from Rare Earth Elements in Concentrated Nitric Acid Solution Using a Phosphonic Acid Functionalized Porous Organic Polymer Adsorbent. Sep. Purif. Technol. 2020, 237, 116379. DOI: 10.1016/j.seppur.2019.116379.
  • Srivastava, V.; Weng, C. H.; Singh, V. K.; Sharma, Y. C. Adsorption of Nickel Ions from Aqueous Solutions by Nano Alumina: Kinetic, Mass Transfer, and Equilibrium Studies. J. Chem. Eng. Data. 2011, 56(4), 1414–1422. DOI: 10.1021/je101152b.
  • Čejka, J.;. Organized Mesoporous Alumina: Synthesis, Structure and Potential in Catalysis. Appl. Catal., A. 2003, 254(2), 327–338. DOI: 10.1016/S0926-860X(03)00478-2.
  • Tel’nova, G. B.; Solntsev, K. A. Structure and Ionic Conductivity of a Beta-alumina-based Solid Electrolyte Prepared from Sodium Polyaluminatenanopowders. Inorg. Mater. 2015, 51(3), 257–266. DOI: 10.1134/S0020168515030176.
  • El-Latif, M. M. A.; Ibrahim, A. M.; Showman, M. S.; Hamide, R. R. A. Alumina/iron Oxide Nano Composite for Cadmium Ions Removal from Aqueous Solutions. Int. J. Nonferrous Metall. 2013, 2, 46–62. DOI: 10.4236/ijnm.2013.22007.
  • Pan, Y. X.; Liu, C. J.; Wiltowski, T. S.; Ge, Q. CO2 Adsorption and Activation over γ-Al2O3-supported Transition Metal Dimers: A Density Functional Study. Catal. Today. 2009, 147(2), 68–76. DOI: 10.1016/j.cattod.2009.05.005.
  • Ji, L.; Lin, J.; Tan, K. L.; Zeng, H. C. Synthesis of High-surface-area Alumina Using Aluminum Tri-sec-butoxide− 2, 4-pentanedione− 2-propanol− Nitric Acid Precursors. Chem. Mater. 2000, 12(4), 931–939. DOI: 10.1021/cm990404u.
  • Alnajar, J. A.; Kwaeri, A. A.; Sayhood, R. H.; Slaymon, A. H. Study the Feasibility of Alumina for the Adsorption of Metal Ions from Water. Iraqi J. Chem. Pet. Eng. 2014, 15(3), 37–50.
  • Xia, Y.; Zhang, L.; Wang, Y.; Jiao, X.; Chen, D. A Facile Strategy to Fabricate Well-defined Mesoporous γ-Al2O3microcubes with Good Adsorption Performance Towards Cr (VI) Removal. Mater. Lett. 2015, 143, 294–297. DOI: 10.1016/j.matlet.2014.12.120.
  • Thavamani, S. S.; Rajkumar, R. Removal of Cr (VI), Cu (II), Pb (II) and Ni (II) from Aqueous Solutions by Adsorption on Alumina. Res. J. Chem. Sci. 2013, 3(8), 44–48.
  • Dolatyari, L.; Shateri, M.; Yaftian, M. R.; Rostamnia, S. Unmodified SBA–15 Adsorbents for the Removal–separation of Th(IV) and U(VI) Ions; the Role of Pores Channels and Surface Active Sites. Sep. Sci. Technol. 2019, 54, 2863–2878. DOI: 10.1080/01496395.2018.1556297.
  • Dousti, Z.; Dolatyari, L.; Yaftian, M. R.; Rostamnia, S. Adsorption of Eu(III), Th(IV) and U(VI) by Mesoporous Solid Materials Bearing Sulfonic Acid and Sulfamic Acid Functionalities. Sep. Sci. Technol. 2019, 54, 2606–2624. DOI: 10.1080/01496395.2018.1548483.
  • Dolatyari, L.; Yaftian, M. R.; Rostamnia, S. Adsorption of Th(IV) and U(VI) on Functionalized SBA–15 Mesoporous Silica Materials Using Fixed Bed Column Method; Breakthrough Curves Prediction and Modeling. Sep. Sci. Technol. 2018, 53, 1282–1294. DOI: 10.1080/01496395.2018.1444055.
  • Dolatyari, L.; Yaftian, M. R.; Rostamnia, S. Adsorption Characteristics of Eu(III) and Th(IV) Ions onto Modified Mesoporous Silica SBA-15 Materials. J. Taiwan Inst. Chem. Eng. 2016, 60, 174–184. DOI: 10.1016/j.jtice.2015.11.004.
  • Dolatyari, L.; Yaftian, M. R.; Rostamnia, S. Removal of uranium(VI) Ions from Aqueous Solutions Using Schiff Base Functionalized SBA-15 Mesoporous Silica Materials. J. Environ. Manage. 2016, 169, 8–17. DOI: 10.1016/j.jenvman.2015.12.005.
  • Zhang, P.; Wang, L.; Du, K.; Wang, S.; Huang, Z.; Yuan, L. ;.; Li, Z.; Wang, H.; Zheng, L.; Zhifan, Z.; et al. Effective Removal of U(VI) and Eu(III) by Carboxyl Functionalized MXene Nanosheets. J. Hazard. Mater. 2020, 396, 122731. DOI: 10.1016/j.jhazmat.2020.122731.
  • Lia, S.; Wang, L.; Peng, J.; Zhai, M.; Shi, W. Efficient Thorium (IV) Removal by Two-dimensional Ti2CTx MXene from Aqueous Solution. Chem. Eng. J. 2019, 366, 192–199. DOI: 10.1016/j.cej.2019.02.056.
  • Huang, Z.; Hu, K.; Mei, L.; Kong, X.; Yu, J.; Liu, K.; Zeng, L.; Chai, Z.; Shi, W. Mixed-Ligands Strategy Regulates Thorium-based MOFs. Dalton Trans. 2020, 49(4), 983–987. DOI: 10.1039/C9DT04158C.
  • Huang, Z.; Li, Z.; Zheng, L.; Wu, W.; Chai, Z.; Shi, W. Adsorption of Eu(III) and Th(IV) on Three-dimensional Graphene-based Macrostructure Studied by Spectroscopic Investigation. Environ. Pollut. 2019, 248, 82–89. DOI: 10.1016/j.envpol.2019.01.050.
  • Wang, L.; Li, Z.; Wu, Q.; Huang, Z.; Yuan, L.; Chai, Z.; Shi, W. Layered Structure-based Materials: Challenges and Opportunities for Radionuclide Sequestration. Environ. Sci.: Nano. 2020, 7(3), 724–752. DOI: 10.1039/D0EN00464B.
  • Jin, X.; Cai, W.; Cai, Z. Amino Organosilane Grafted Ordered Mesoporous Alumina with Enhanced Adsorption Performance Towards Cr (VI). RSC Adv. 2017, 7(84), 53076–53086. DOI: 10.1039/c7ra10933d.
  • De Vito, I. E.; Masi, A. N.; Olsina, R. A. Determination of Trace Rare Earth Elements by X-ray Fluorescence Spectrometry after Preconcentration on a New Chelating Resin Loaded with Thorin. Talanta. 1999, 49(4), 929–935. DOI: 10.1016/S0039-9140(99)00089-2.
  • Karmakar, R.; Sen, K. Role of Biomolecules in Selective Extraction of U (VI) Using an Aqueous Biphasic System. J. Radioanal. Nucl. Chem. 2019, 322, 57–66. DOI: 10.1007/s10967-019-06494.
  • Singh, P.; Maiti, P. K.; Sen, K. Pristine and Modified-mesoporous Alumina: Molecularassistance-based Drug Loading and Sustained Release Activity. Bull. Mater. Sci. 2020, 43(56), 1–9. DOI: 10.1007/s12034-019-1991-1.
  • Savvin, S. B.;. Analytical Use of Arsenazo III: Determination of Thorium, Zirconium, Uranium and Rare Earth Elements. Talanta. 1961, 8(9), 673–685. DOI: 10.1016/0039-9140(61)80164-1.
  • Langmuir, I.;. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38(11), 2221–2295.
  • Freundlich, H. M. F.;. Uber Die Adsorption in Losungen. ZeitschriftfürPhysikalischeChemie. 1906, 57, 385–470.
  • Temkin, M. I.;. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Actaphysiochim. URSS. 1940, 12, 327–356.
  • Putz, A. M.; Len, A.; Ianăşi, C.; Savii, C.; Almásy, L. Ultrasonic Preparation of Mesoporous Silica Using Pyridinium Ionic Liquid. Korean J. Chem. Eng. 2016, 33, 749–754. DOI: 10.1007/s11814-016-0021-x.
  • ALOthman, Z. A.;. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials. 2012, 5, 2874–2902. DOI: 10.3390/ma5122874.
  • Liu, J.; Luo, M.; Yuan, Z.; Ping, A. Synthesis, Characterization, and Application of Titanate Nanotubes for Th(IV) Adsorption. J. Radioanal. Nucl. Chem. 2013, 298(2), 1427–1434. DOI: 10.1007/s10967-013-2607-7.
  • Fouad, H. K.; Abu-Elenein, S. A.; Elrakaiby, R. M.; Abdelmoteleb, S. S. Developed Spectrophotometric Method for Thorium Determination in Different Rosetta Monazite Concentrates Using Thorin Dye. Int. J. Adv. Res. 2015, 3(7), 326–336.
  • Byrd, C. H.; Banks, C. V. Spectrophotometric Determination of Thorium with the Trisodium Salt of 2-(2-hydroxy-3, 6-disulfo-1-naphthylazo)-benzenearsonic Acid and Some Properties of Complexes Involved (Vol. 456). 1953. US Atomic Energy Commission, Technical Information Service.
  • Thomason, P. F.; Perry, M. A.; Byerly, W. M. Determination of Microgram Amounts of Thorium. Anal. Chem. 1949, 21(10), 1239–1241. DOI: 10.1021/ac60034a029.
  • Rajurkar, N. S.; Gokarn, A. N.; Dimya, K. Adsorption of Chromium (III), Nickel (II), and Copper (II) from Aqueous Solution by Activated Alumina. Clean-soil Air Water. 2011, 39(8), 767–773. DOI: 10.1002/clen.201000273.
  • Huang, Y. H.; Hsueh, C. L.; Huang, C. P.; Su, L. C.; Chen, C. Y. Adsorption Thermodynamic and Kinetic Studies of Pb (II) Removal from Water onto a Versatile Al2O3-supported Iron Oxide. Sep. Purif. Technol. 2007, 55(1), 23–29. DOI: 10.1016/j.seppur.2006.10.023.
  • Jaycock, M. J.; Parfitt, G. D. Chemistry of Interfaces; Ellis Horwood Limited Publishers: Chichester, 1981. DOI: 10.1002/bbpc.19810850925.
  • Suzuki, M.;. Adsorption Engineering; Kodansha: Tokyo, 1990.
  • Dizge, N.; Aydiner, C.; Demirbas, E.; Kobya, M.; Kara, S. Adsorption of Reactive Dyes from Aqueous Solutions by Fly Ash: Kinetic and Equilibrium Studies. J. Hazard. Mater. 2008, 150(3), 737–746. DOI: 10.1016/j.jhazmat.2007.05.027.
  • Ho, Y. S.; McKay, G. Pseudo-second Order Model for Sorption Processes. Process Biochem. 1999, 34(5), 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Li, S.; Wang, L.; Peng, J.; Zhai, M.; Shi, W. Efficient Thorium (IV) Removal by Two-dimensional Ti2CTx MXene from Aqueous Solution. Chem. Eng. J. 2019, 366, 192–199. DOI: 10.1016/j.cej.2019.02.056.
  • Melchior, S. A.; Raju, K.; Ike, I. S.; Erasmus, R. M.; Kabongo, G.; Sigalas, I.; Iyuke, S. E.; Ozoemena, K. I. High-voltage Symmetric Supercapacitor Based on 2d Titanium Carbide (Mxene, Ti2CTx)/carbon Nanosphere Composites in a Neutral Aqueous Electrolyte. J. Electrochem. Soc. 2018, 165(3), A501–A511. DOI: 10.1149/2.0401803jes.
  • Jiang, Z.; Xie, F.; Kang, C.; Wang, Y.; Yuan, L.; Wang, Y. Adsorption of Thorium (IV) from Aqueous Solutions by Poly(cyclotriphosphazene-co-4,4′-diaminodiphenyl Ether) Microspheres. J. Radioanal. Nucl. Chem. 2019, 321(3), 895–905. DOI: 10.1007/s10967-019-06652-0.
  • Sharma, P.; Sharma, M.; Tomar, R. Na-HEU Zeolite Synthesis for the Removal of Th(IV) and Eu(III) from Aqueous Waste by Batch Process. J. Taiwan Inst. Chem. Eng. 2013, 44(3), 480–488. DOI: 10.1016/j.jtice.2012.12.009.
  • Kaygun, A. K.; Akyil, S. Study of the Behaviour of Thorium Adsorption on PAN/zeolite Composite Adsorbent. J. Hazard. Mater. 2007, 147(1–2), 357–362. DOI: 10.1016/j.jhazmat.2007.01.020.
  • Anirudhan, T. S.; Suchithra, P. S.; Senan, P.; Tharun, A. R. Kinetic and Equilibrium Profiles of Adsorptive Recovery of thorium(IV) from Aqueous Solutions Using Poly(methacrylic Acid) Grafted Cellulose/bentonite Superabsorbent Composite. Ind. Eng. Chem. Res. 2012, 51(13), 4825–4836. DOI: 10.1021/ie202538q.
  • Kütahyalı, C.; Eral, M. Sorption Studies of Uranium and Thorium on Activated Carbon Prepared from Olive Stones: Kinetic and Thermodynamic Aspects. J. Nucl. Mater. 2010, 396(2–3), 251–256. DOI: 10.1016/j.jnucmat.2009.11.018.
  • Nilchi, A.; Dehaghan, T. S.; Garmarodi, S. R. Kinetics, Isotherm and Thermodynamics for Uranium and Thorium Ions Adsorption from Aqueous Solutions by Crystalline Tin Oxide Nanoparticles. Desalination. 2013, 321, 67–71. DOI: 10.1016/j.desal.2012.06.022.
  • Zhang, Z. B.; Zhou, Y. D.; Liu, Y. H.; Cao, X. H.; Zhou, Z. W.; Han, B.; Liang, P.; Xiong, G. X. Removal of Thorium from Aqueous Solution by Ordered Mesoporous Carbon CMK-3. J. Radioanal. Nucl. Chem. 2014, 302(1), 9–16. DOI: 10.1007/s10967-014-3304-x.
  • Yuan, L. Y.; Bai, Z. Q.; Zhao, R.; Liu, Y. L.; Li, Z. J.; Chu, S. Q.; Zheng, L. R.; Zhang, J.; Zhao, Y. L.; Chai, Z. F.; et al. Introduction of Bifunctional Groups into Mesoporous Silica for Enhancing Uptake of Thorium (IV) from Aqueous Solution. ACS Appl. Mater. Interfaces. 2014, 6(7), 4786–4796. DOI: 10.1021/am405584h.
  • Zuo, L.; Yu, S.; Zhou, H.; Tian, X.; Jiang, J. Th(IV) Adsorption on Mesoporous Molecular Sieves: Effects of Contact Time, Solid Content, pH, Ionic Strength, Foreign Ions and Temperature. J. Radioanal. Nucl. Chem. 2011, 288(2), 379–387. DOI: 10.1007/s10967-010-0930-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.