85
Views
0
CrossRef citations to date
0
Altmetric
Vacuum distillation

Fractionation of a vacuum residue with a mixture of CO2-toluene as a method for characterizing heavy petroleum feedstocks

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2626-2633 | Received 10 Jun 2020, Accepted 14 Oct 2020, Published online: 27 Oct 2020

References

  • He, P.; Ghoniem, A. F. A Group Contribution Pseudocomponent Method for Phase Equilibrium Modeling of Mixtures of Petroleum Fluids and a Solvent. Ind. Eng. Chem. Res. 2015, 54, 8809.
  • Díaz, O. C.; Modaresghazani, J.; Satyro, M. A.; Yarranton, H. W. Modeling the Phase Behavior of Heavy Oil and Solvent Mixtures. Fluid Phase Equilib. 2011, 304, 74. DOI: 10.1016/j.fluid.2011.02.011.
  • Punnapala, S.; Vargas, F. M. Revisiting the PC-SAFT Characterization Procedure for an Improved Asphaltene Precipitation Prediction. Fuel. 2013, 108, 417. DOI: 10.1016/j.fuel.2012.12.058.
  • Zhao, S.; Wang, R.; Lin, S. High-Pressure Phase Behavior and Equilibria for Chinese Petroleum Residua and Light Hydrocarbon Systems. Pet. Sci. Technol. 2006, 24, 297.
  • Andersen, S. I.; Speight, J. G. Petroleum Resins: Separation, Character, and Role in Petroleum. Pet. Sci. Technol. 2001, 19(1–2), 1. DOI: 10.1081/LFT-100001223.
  • Shi, T.-P.; Hu, Y.-X.; Xu, Z.-M.; Su, T.; Wang, R.-A. Characterizing Petroleum Vacuum Residue by Supercritical Fluid Extraction and Fractionation. Ind. Eng. Chem. Res. 1997, 36, 3988. DOI: 10.1021/ie970152b.
  • Pripakhaylo, A. V.; Magomedov, R. N.; Maryutina, T. A. Separation of Heavy Oil into Narrow Fractions by Supercritical Fluid Extraction Using a CO2-toluene Mixture. J. Anal. Chem. 2019, 74(4), 401. DOI: 10.1134/S1061934819040105.
  • Magomedov, R. N.; Pripakhaylo, A. V.; Maryutina, T. A. Solvent Demetallization of Heavy Petroleum Feedstock Using Supercritical Carbon Dioxide with Modifiers. J. Supercrit. Fluids. 2017, 119, 150. DOI: 10.1016/j.supflu.2016.08.022.
  • Wu, W.; Ke, J.; Poliakoff, M. Phase Boundaries of CO2 + Toluene, CO2 + Acetone, and CO2 + Ethanol at High Temperatures and High Pressures. J. Chem. Eng. Data. 2006, 51, 1398. DOI: 10.1021/je060099a.
  • Lodi, L.; Cárdenas Concha, V. O.; Medina, L. C.; Maciel Filho, R.; Wolf Maciel, M. R. An Experimental Study of a Pilot Plant Deasphalting Process in CO2 Supercritical. Pet. Sci. Technol. 2015, 33, 481. DOI: 10.1080/10916466.2014.988871.
  • Deo, M. D.; Hwang, J.; Hanson, F. V. Supercritical Fluid Extraction of a Crude Oil, Bitumen-derived Liquid and Bitumen by Carbon Dioxide and Propane. Fuel. 1992, 71, 1519. DOI: 10.1016/0016-2361(92)90229-H.
  • Rose, L.; Svrcek, W. Y.; Monnery, W. D.; Chong, K. Fractionation of Peace River Bitumen Using Supercritical Ethane and Carbon Dioxide. Ind. Eng. Chem. Res. 2000, 39, 3875. DOI: 10.1021/ie000320r.
  • Wang, S.; Liu, J.; Zhang, L.; Masliyah, J.; Xu, Z. Interaction Forces between Asphaltene Surfaces in Organic Solvents. Langmuir. 2010, 26(1), 183. DOI: 10.1021/la9020004.
  • Dashtia, H.; Zanganeh, P.; Kord, S.; Ayatollahi, S.; Amiri, A. Mechanistic Study to Investigate the Effects of Different Gas Injection Scenarios on the Rate of Asphaltene Deposition: An Experimental Approach. Fuel. 2020, 262, 116615. DOI: 10.1016/j.fuel.2019.116615.
  • Fang, T.; Wang, M.; Li, J.; Liu, B.; Shen, Y.; Yan, Y.; Zhang, J. Study on the Asphaltene Precipitation in CO2 Flooding: A Perspective from Molecular Dynamics Simulation. Ind. Eng. Chem. Res. 2018, 57(3), 1071. DOI: 10.1021/acs.iecr.7b03700.
  • Headen, T. F.; Boek, E. S. Molecular Dynamics Simulations of Asphaltene Aggregation in Supercritical Carbon Dioxide with and without Limonene. Energy Fuels. 2011, 25, 503. DOI: 10.1021/ef1010397.
  • Zanganeh, P.; Dashti, H.; Ayatollahi, S. Visual Investigation and Modeling of Asphaltene Precipitation and Deposition during CO2 Miscible Injection into Oil Reservoirs. Fuel. 2015, 160, 132. DOI: 10.1016/j.fuel.2015.07.063.
  • Azinfar, B.; Haddadnia, A.; Zirrahi, M.; Hassanzadeh, H.; Abedi, J. Effect of Asphaltene on Phase Behavior and Thermophysical Properties of Solvent/Bitumen Systems. J. Chem. Eng. Data. 2017, 62(1), 547. DOI: 10.1021/acs.jced.6b00836.
  • Soroush, S.; Breure, B.; de Loos, T. W.; Zitha, P.; Peters, C. J. High-pressure Phase Behaviour of Two Poly-aromatic Molecules in the Presence of Toluene and Carbon Dioxide. J. Supercrit. Fluids. 2014, 94, 59. DOI: 10.1016/j.supflu.2014.05.019.
  • Ni, H.; Hsu, C. S.; Lee, P.; Wright, J.; Chen, R.; Xu, C.; Shi, Q. Supercritical Carbon Dioxide Extraction of Petroleum on Kieselguhr. Fuel. 2015, 141, 74. DOI: 10.1016/j.fuel.2014.09.126.
  • Zhao, S.; Sparks, B. D.; Kotlyar, L. S.; Chung, K. H. Correlation of Processability and Reactivity Data for Residua from Bitumen, Heavy Oils and Conventional Crudes: Characterization of Fractions from Super-critical Pentane Separation as a Guide to Process Selection. Catal. Today. 2007, 125, 122. DOI: 10.1016/j.cattod.2007.05.025.
  • Yakubov, M. R.; Sinyashin, K. O.; Abilova, G. R.; Tazeeva, E. G.; Milordov, D. V.; Yakubova, S. G.; Borisov, D. N.; Gryaznov, P. I.; Mironov, N. A.; Borisova, Y. Y. Differentiation of Heavy Oils according to the Vanadium and Nickel Content in Asphaltenes and Resins. Pet. Chem. 2017, 57(10), 849. DOI: 10.1134/S096554411710019X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.