486
Views
10
CrossRef citations to date
0
Altmetric
Ionic Liquids

Direct dissolution of metal oxides in ionic liquids as a smart strategy for separations: Current status and prospective

&
Pages 2792-2823 | Received 09 Nov 2021, Accepted 31 Jan 2022, Published online: 28 Feb 2022

References

  • Binnemans, K. Lanthanides and Actinides in Ionic Liquids. Chem. Rev. 2007, 107, 2592–2614. DOI: 10.1021/cr050979c.
  • Bychkov, A. V.; Skiba, O. V. Review of Non-Aqueous Nuclear Fuel Reprocessing and Separation Methods, in: G.R. Choppin, M.K. Khankhasayev (Eds.) Chemical Separation Technologies and Related Methods of Nuclear Waste Management: Applications, Problems, and Research Needs, Springer Netherlands, Dordrecht, 1999, pp 71–98.
  • Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. DOI: 10.1021/cr068040u.
  • Kosugi, K.; Fukushima, M.; Myochin, M.; Mizuguchi, K.; Oomori, T. Deposition Behavior of UO2 and Noble-metal Elements in Oxide-electrowinning Reprocessing. J. Phys. Chem. Solids. 2005, 66, 629–633. DOI: 10.1016/j.jpcs.2004.07.021.
  • Mohapatra, P. K. Actinide Ion Extraction Using Room Temperature Ionic Liquids: Opportunities and Challenges for Nuclear Fuel Cycle Applications. Dalton Trans. 2017, 46, 1730–1747. DOI: 10.1039/C6DT04898F.
  • Park, J.; Jung, Y.; Kusumah, P.; Lee, J.; Kwon, K.; Lee, C. K. Application of Ionic Liquids in Hydrometallurgy. Int. J. Mol. Sci. 2014, 15, 15320–15343. DOI: 10.3390/ijms150915320.
  • Souček, P.; Malmbeck, R.; Nourry, C.; Glatz, J.-P. Pyrochemical Reprocessing of Spent Fuel by Electrochemical Techniques Using Solid Aluminium Cathodes. Energy Procedia. 2011, 7, 396–404. DOI: 10.1016/j.egypro.2011.06.052.
  • Straka, M. Toward a Greenish Nuclear Fuel Cycle: Ionic Liquids as Solvents for SpentNuclear Fuel Reprocessing and Other Decontamination Processes for Contaminated Metal Waste; Phys. Sci. Rev. 2016, 1, 1.
  • Vavilov, S.; Kobayashi, T.; Myochin, M. Principle and Test Experience of the RIAR’s Oxide Pyro-process. J. Nucl. Sci. Technol. 2004, 41, 1018–1025. DOI: 10.1080/18811248.2004.9726326.
  • Walden, P. Molecular Weights and Electrical Conductivity of Several Fused Salts, Bull. Acad. Imper. Sci.(St. Petersburg), 1800. 1914.
  • Appetecchi, G. B.; Scaccia, S.; Tizzani, C.; Alessandrini, F.; Passerini, S. Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications. J. Electrochem. Soc. 2006, 153, A1685. DOI: 10.1149/1.2213420.
  • Luis, S. V.; García-Verdugo, E.; Burguete, M. I.; Andrio, A.; Mollá, S.; Compan, V. Polymers with Ionic Liquid Fragments as Potential Conducting Materials for Advanced Applications. Appl of Ionic Liquids in Sci and Technol, InTech. 2011, 83–108.
  • Gericke, M.; Fardim, P.; Heinze, T. Ionic Liquids—promising but Challenging Solvents for Homogeneous Derivatization of Cellulose. Molecules. 2012, 17, 7458–7502. DOI: 10.3390/molecules17067458.
  • Rogers, R. D. Ionic Liquids: Industrial Applications for Green Chemistry, ACS Symposium Series 818; American Chemical Society: Washington, DC, 2002.
  • Sato, T.; Masuda, G.; Takagi, K. Electrochemical Properties of Novel Ionic Liquids for Electric Double Layer Capacitor Applications. Electrochim. Acta. 2004, 49, 3603–3611. DOI: 10.1016/j.electacta.2004.03.030.
  • Carmichael, A. J.; Haddleton, D. M.; Bon, S. A.; Seddon, K. R. Copper (I) Mediated Living Radical Polymerisation in an Ionic Liquid. Chem. Commun. 2000, 1237–1238. DOI:10.1039/b003335i.
  • He, C.; Long, Y.; Pan, J.; Li, K.; Liu, F. Molecularly Imprinted Silica Prepared with Immiscible Ionic Liquid as Solvent and Porogen for Selective Recognition of Testosterone. Talanta. 2008, 74, 1126–1131. DOI: 10.1016/j.talanta.2007.08.009.
  • Hallett, J. P.; Welton, T. Room-temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. DOI: 10.1021/cr1003248.
  • Kubisa, P. Application of Ionic Liquids as Solvents for Polymerization Processes. Prog. Polym. Sci. 2004, 29, 3–12. DOI: 10.1016/j.progpolymsci.2003.10.002.
  • Rogers, R. D.; Seddon, K. R. Ionic Liquids–solvents of the Future? Science. 2003, 302, 792–793. DOI: 10.1126/science.1090313.
  • Weyershausen, B.; Lehmann, K. Industrial Application of Ionic Liquids as Performance Additives. Green Chem. 2005, 7, 15–19. DOI: 10.1039/b411357h.
  • Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou, Y. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures. Angew. Chem. Int. Ed. 2004, 43, 4988–4992. DOI: 10.1002/anie.200460091.
  • Dash, P.; Scott, R. W. 1-Methylimidazole Stabilization of Gold Nanoparticles in Imidazolium Ionic Liquids. Chem. Commun. 2009, 812–814. DOI:10.1039/b816446k.
  • Zuo, Y.; Liu, Y.; Chen, J.; Li, D. Q. The Separation of Cerium (IV) from Nitric Acid Solutions Containing Thorium (IV) and Lanthanides (III) Using Pure [C8mim]pf6 as Extracting Phase. Ind. Eng. Chem. Res. 2008, 47, 2349–2355. DOI: 10.1021/ie071486w.
  • Shimojo, K.; Kurahashi, K.; Naganawa, H. Extraction Behavior of Lanthanides Using a Diglycolamide Derivative TODGA in Ionic Liquids. Dalton Trans. 2008, 5083–5088. DOI:10.1039/b810277p.
  • Nakashima, K.; Kubota, F.; Maruyama, T.; Goto, M. Ionic Liquids as a Novel Solvent for Lanthanide Extraction. Anal. Sci. 2003, 19, 1097–1098. DOI: 10.2116/analsci.19.1097.
  • Luo, H.; Dai, S.; Bonnesen, P. V. Solvent Extraction of Sr2+ and Cs+ Based on Room-temperature Ionic Liquids Containing Monoaza-substituted Crown Ethers. Anal. Chem. 2004, 76, 2773–2779. DOI: 10.1021/ac035473d.
  • Jensen, M. P.; Neuefeind, J.; Beitz, J. V.; Skanthakumar, S.; Soderholm, L. Mechanisms of Metal Ion Transfer into Room-temperature Ionic Liquids: The Role of Anion Exchange. J. Am. Chem. Soc. 2003, 125, 15466–15473. DOI: 10.1021/ja037577b.
  • Dietz, M. L.; Dzielawa, J. A.; Laszak, I.; Young, B. A.; Jensen, M. P. Influence of Solvent Structural Variations on the Mechanism of Facilitated Ion Transfer into Room-temperature Ionic Liquids. Green Chem. 2003, 5, 682–685. DOI: 10.1039/B310507P.
  • Dietz, M. L.; Dzielawa, J. A. Ion-exchange as a Mode of Cation Transfer into Room-temperature Ionic Liquids Containing Crown Ethers: Implications for the ‘Greenness’ of Ionic Liquids as Diluents in Liquid–liquid Extraction. Chem. Commun. 2001, 2124–2125. DOI:10.1039/b104349h.
  • Dai, S.; Ju, Y.; Barnes, C. Solvent Extraction of Strontium Nitrate by a Crown Ether Using Room-temperature Ionic Liquids. J of the Chemical Society, Dalton Transactions. 1999, 1201–1202. DOI: 10.1039/a809672d.
  • Vidal, S. T.; Neiva Correia, M. J.; Marques, M. M.; Ismael, M. R.; Angelino Reis, M. T. Studies on the Use of Ionic Liquids as Potential Extractants of Phenolic Compounds and Metal Ions. Sep. Sci. Technol. 2005, 39, 2155–2169. DOI: 10.1081/SS-120039311.
  • Cocalia, V. A.; Jensen, M. P.; Holbrey, J. D.; Spear, S. K.; Stepinski, D. C.; Rogers, R. D. Identical Extraction Behavior and Coordination of Trivalent or Hexavalent F-element Cations Using Ionic Liquid and Molecular Solvents. Dalton Trans. 2005, 1966–1971. DOI:10.1039/b502016f.
  • Bartsch, R. A.; Chun, S.; Dzyuba, S. V. Ionic Liquids as Novel Diluents for Solvent Extraction of Metal Salts by Crown Ethers; ACS Symposium Series, American Chemical Society, 818, 2002, pp 58–68.
  • Abbott, A. P.; Frisch, G.; Hartley, J.; Ryder, K. S. Processing of Metals and Metal Oxides Using Ionic Liquids. Green Chem. 2011, 13, 471–481. DOI: 10.1039/c0gc00716a.
  • Nishimura, T.; Koyama, T.; Iizuka, M.; Tanaka, H. Development of an Environmentally Benign Reprocessing technology—Pyrometallurgical Reprocessing Technology. Prog. Nucl. Energy. 1998, 32, 381–387. DOI: 10.1016/S0149-1970(97)00032-2.
  • Harmon, C. D.; Smith, W. H.; Costa, D. A. Criticality Calculations for Plutonium Metal at Room Temperature in Ionic Liquid Solutions. Radiat. Phys. Chem. 2001, 60, 157–159. DOI: 10.1016/S0969-806X(00)00336-4.
  • Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic Liquids as Electrolytes. Electrochim. Acta. 2006, 51, 5567–5580. DOI: 10.1016/j.electacta.2006.03.016.
  • Branco, L. C.; Rosa, J. N.; Moura Ramos, J. J.; Afonso, C. A. Preparation and Characterization of New Room Temperature Ionic Liquids. Chemistry. 2002, 8, 3671–3677. DOI: 10.1002/1521-3765(20020816)8:16<3671::AID-CHEM3671>3.0.CO;2-9.
  • Marciniak, A. The Solubility Parameters of Ionic Liquids. Int. J. Mol. Sci. 2010, 11, 1973–1990. DOI: 10.3390/ijms11051973.
  • Ohashi, Y.; Asanuma, N.; Harada, M.; Wada, Y.; Matsubara, T.; Ikeda, Y. Application of Ionic Liquid as a Medium for Treating Waste Contaminated with UF4. J. Nucl. Sci. Technol. 2009, 46, 771–775. DOI: 10.1080/18811248.2007.9711584.
  • Pereiro, A.; Araújo, J.; Oliveira, F.; Esperança, J.; Lopes, J. C.; Marrucho, I.; Rebelo, L. Solubility of Inorganic Salts in Pure Ionic Liquids. J. Chem. Thermodyn. 2012, 55, 29–36. DOI: 10.1016/j.jct.2012.06.007.
  • Giridhar, P.; Venkatesan, K.; Srinivasan, T.; Rao, P. V. Electrochemical Behavior of Uranium (VI) in 1-butyl-3-methylimidazolium Chloride and Thermal Characterization of Uranium Oxide Deposit. Electrochim. Acta. 2007, 52, 3006–3012. DOI: 10.1016/j.electacta.2006.09.038.
  • Nockemann, P.; Thijs, B.; Parac-Vogt, T. N.; Van Hecke, K.; Van Meervelt, L.; Tinant, B.; Hartenbach, I.; Schleid, T.; Ngan, V. T.; Nguyen, M. T. Carboxyl-functionalized Task-specific Ionic Liquids for Solubilizing Metal Oxides. Inorg. Chem. 2008, 47, 9987–9999. DOI: 10.1021/ic801213z.
  • Hitchcock, P. B.; Mohammed, T. J.; Seddon, K. R.; Zora, J. A.; Hussey, C. L.; Haynes Ward, E. 1-Methyl-3-ethylimidazolium Hexachlorouranate (IV) and 1-methyl-3-ethylimidazolium Tetrachlorodioxo-uranate (VI): Synthesis, Structure, and Electrochemistry in a Room Temperature Ionic Liquid. Inorg. Chim. Acta. 1986, 113, L25–L26. DOI: 10.1016/S0020-1693(00)82244-6.
  • Gale, R.; Gilbert, B.; Osteryoung, R. Raman Spectra of Molten Aluminum Chloride: 1-butylpyridinium Chloride Systems at Ambient Temperatures. Inorg. Chem. 1978, 17, 2728–2729. DOI: 10.1021/ic50188a008.
  • Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-temperature Ionic Liquids for Electrochemistry, Spectroscopy and Synthesis. Inorg. Chem. 1982, 21, 1263–1264. DOI: 10.1021/ic00133a078.
  • Davis, J. H.; James. Task-specific Ionic Liquids. Chem. Lett. 2004, 33, 1072–1077. DOI: 10.1246/cl.2004.1072.
  • Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.; Wierzbicki, A.; Davis, J. H., Jr; Rogers, R. D. Task-specific Ionic Liquids for the Extraction of Metal Ions from Aqueous Solutions. Chem. Commun. 2001, 135–136. DOI:10.1039/b008041l.
  • Mohapatra, P. K.; Sengupta, A.; Iqbal, M.; Huskens, J.; Verboom, W. Highly Efficient Diglycolamide‐based Task‐specific Ionic Liquids: Synthesis, Unusual Extraction Behaviour, Irradiation, and Fluorescence Studies. Chemistry. 2013, 19, 3230–3238. DOI: 10.1002/chem.201203321.
  • Baston, G.; Bradley, A.; Gorman, T.; Hamblett, I.; Hardacre, C.; Hatter, J.; Healy, M.; Hodgson, B.; Lewin, R.; Lovell, K. Ionic Liquids for the Nuclear Industry: A Radiochemical, Structural, and Electrochemical Investigation, ACS Symposium Series, American Chemical Society, Vol. 818. 2002, pp 162–177.
  • Asanuma, N.; Harada, M.; Yasuike, Y.; Nogami, M.; Suzuki, K.; Ikeda, Y. Electrochemical Properties of Uranyl Ion in Ionic Liquids as Media for Pyrochemical Reprocessing. J. Nucl. Sci. Technol. 2007, 44, 368–372. DOI: 10.1080/18811248.2007.9711296.
  • Ikeda, Y. Application of Ionic Liquids to Pyrochemical Reprocessing Methods (1)-dissolution of Uranium Oxide Fuels by Using Cl_2, in: 2005 Fall Meeting of the Atomic Energy Society of Japan, Hachinohe, Japan, 2005.
  • Abbott, A. P.; Frisch, G.; Ryder, K. S. Metal Complexation in Ionic Liquids, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 2008, 104, 21–45.
  • Richter, J.; Ruck, M. Synthesis and Dissolution of Metal Oxides in Ionic Liquids and Deep Eutectic Solvents. Molecules. 2020, 25, 78. DOI: 10.3390/molecules25010078.
  • Lu, D.; Shomali, N.; Shen, A. Task Specific Ionic Liquid for Direct Electrochemistry of Metal Oxides. Electrochem. Commun. 2010, 12, 1214–1217. DOI: 10.1016/j.elecom.2010.06.022.
  • Nockemann, P.; Thijs, B.; Hecke, K. V.; Meervelt, L. V.; Binnemans, K. Polynuclear Metal Complexes Obtained from the Task-specific Ionic Liquid Betainium Bistriflimide. Cryst. Growth Des. 2008, 8, 1353–1363. DOI: 10.1021/cg701187t.
  • Nockemann, P.; Thijs, B.; Lunstroot, K.; Parac-Vogt, T.; Goerller-Walrand, C.; Binnemans, K.; Van Hecke, K.; Van Meervelt, L.; Nikitenko, S.; Daniels, J. Speciation of Rare-earth Metal Complexes in Ionic Liquids: A Multiple-technique Approach. Chemistry. 2009, 15, 1449–1461. DOI: 10.1002/chem.200801418.
  • Fan, F.-L.; Qin, Z.; Cao, S.-W.; Tan, C.-M.; Huang, Q.-G.; Chen, D.-S.; Wang, J.-R.; Yin, X.-J.; Xu, C.; Feng, X.-G. Highly Efficient and Selective Dissolution Separation of Fission Products by an Ionic Liquid [Hbet][tf2n]: A New Approach to Spent Nuclear Fuel Recycling. Inorg. Chem. 2018, 58, 603–609. DOI: 10.1021/acs.inorgchem.8b02783.
  • Jayachandran, K.; Gupta, R.; Chandrakumar, K.; Goswami, D.; Noronha, D.; Paul, S.; Kannan, S. Remarkably Enhanced Direct Dissolution of Plutonium Oxide in Task-specific Ionic Liquid: Insights from Electrochemical and Theoretical Investigations. Chem. Commun. 2019, 55, 1474–1477. DOI: 10.1039/C8CC10256B.
  • Rao, C. J.; Venkatesan, K.; Nagarajan, K.; Srinivasan, T. Dissolution of Uranium Oxides and Electrochemical Behavior of U (VI) in Task Specific Ionic Liquid. Radiochim. Acta. 2008, 96, 403–409. DOI: 10.1524/ract.2008.1508.
  • Nockemann, P.; Van Deun, R.; Thijs, B.; Huys, D.; Vanecht, E.; Van Hecke, K.; Van Meervelt, L.; Binnemans, K. Uranyl Complexes of Carboxyl-functionalized Ionic Liquids. Inorg. Chem. 2010, 49, 3351–3360. DOI: 10.1021/ic902406h.
  • Dupont, D.; Binnemans, K. Recycling of Rare Earths from NdFeB Magnets Using a Combined Leaching/extraction System Based on the Acidity and Thermomorphism of the Ionic Liquid [Hbet][tf2n. Green Chem. 2015, 17, 2150–2163. DOI: 10.1039/C5GC00155B.
  • Dupont, D.; Binnemans, K. Rare-earth Recycling Using a Functionalized Ionic Liquid for the Selective Dissolution and Revalorization of Y2O3: Eu3+ from Lamp Phosphor Waste. Green Chem. 2015, 17, 856–868. DOI: 10.1039/C4GC02107J.
  • Davris, P.; Balomenos, E.; Panias, D.; Paspaliaris, I. Developing New Process for Selective Extraction of Rare Earth Elements from Bauxite Residue Based on Functionalized Ionic Liquids. In Light Metals 2018; Martin, O.,Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp 149–156. ISBN 978-3-319-72283-2
  • Mawire, G.; van Dyk, L. Extraction of Scandium (Sc) Using a Task-Specific Ionic Liquid Protonated Betaine Bis(Trifluoromethylsulfonyl)Imide [Hbet][Tf2N]. In Extraction 2018; Davis, B.R., Moats, M.S., Wang, S., Gregurek, D., Kapusta, J., Battle, T.P., Schlesinger, M.E., Alvear Flores, G.R., Jak, E., Goodall, G., et al., Eds.;Springer International Publishing: Cham, Switzerland, 2018; pp 2723–2734. ISBN 978-3-319-95021-1.
  • Nockemann, P.; Thijs, B.; Pittois, S.; Thoen, J.; Glorieux, C.; Van Hecke, K.; Van Meervelt, L.; Kirchner, B.; Binnemans, K. Task-specific Ionic Liquid for Solubilizing Metal Oxides. J. Phys. Chem. B. 2006, 110, 20978–20992. DOI: 10.1021/jp0642995.
  • Orefice, M.; Binnemans, K.; Vander Hoogerstraete, T. Metal Coordination in the High-temperature Leaching of Roasted NdFeB Magnets with the Ionic Liquid Betainium Bis (Trifluoromethylsulfonyl) Imide. RSC Adv. 2018, 8, 9299–9310. DOI: 10.1039/C8RA00198G.
  • Richter, J.; Ruck, M. Dissolution of Metal Oxides in Task-specific Ionic Liquid. RSC Adv. 2019. 9, 29699–29710.
  • Bell, R.; Castleman, A.; Thorn, D. Vanadium Oxide Complexes in Room-temperature Chloroaluminate Molten Salts. Inorg. Chem. 1999, 38, 5709–5715. DOI: 10.1021/ic990693o.
  • Dai, S.; Shin, Y.; Toth, L.; Barnes, C. Comparative UV− Vis Studies of Uranyl Chloride Complex in Two Basic Ambient-temperature Melt Systems: The Observation of Spectral and Thermodynamic Variations Induced via Hydrogen Bonding. Inorg. Chem. 1997, 36, 4900–4902. DOI: 10.1021/ic970251h.
  • Mahjoor, P.; Latturner, S. E. Synthesis and Structural Characterization of [Bpyr]4[v4o4cl12] and [Bpyr]4[bi4cl16] Grown in Ionic Liquid [Bpyr][alcl4](bpyr= 1-Butylpyridinium. Cryst. Growth Des. 2009, 9, 1385–1389. DOI: 10.1021/cg800625w.
  • Zhang, B.; Yao, Y.; Shi, Z.; Xu, J.; Wang, Z. Direct Electrochemical Deposition of Lithium from Lithium Oxide in a Highly Stable Aluminium-Containing Solvate Ionic Liquid. Chem Electro Chem. 2018, 5, 3368–3372.
  • Ma, J.-H.; Li, Y.-P.; Li, H.-Q.; Zhang, Y. Synthesis of 1-ethyl-3-methylimidazolium Hydrogen Sulfate and Its Application in the Electrolysis of Aluminum. CHIN J OF PROCESS ENGI. 2007, 7, 1088.
  • Yao, A.; Chu, T. Fe-containing Ionic Liquids as Effective and Recoverable Oxidants for Dissolution of UO2 in the Presence of Imidazolium Chlorides. Dalton Trans. 2013, 42, 8413–8419. DOI: 10.1039/c3dt32832e.
  • Yao, A.; Chu, T. Uranium Dioxide in Fe (Iii)-containing Ionic Liquids with DMSO: Dissolution, Separation, and Structural Characterization. J. Nucl. Mater. 2016, 480, 301–309. DOI: 10.1016/j.jnucmat.2016.08.035.
  • Yao, A.; Qu, F.; Liu, Y.; Qu, G.; Lin, H.; Hu, S.; Wang, X.; Chu, T. Ionic Liquids with Polychloride Anions as Effective Oxidants for the Dissolution of UO2. Dalton Trans. 2019, 48, 16249–16257. DOI: 10.1039/C9DT03574E.
  • Bradley, A. E.; Hatter, J. E.; Nieuwenhuyzen, M.; Pitner, W. R.; Seddon, K. R.; Thied, R. C. Precipitation of a Dioxouranium (VI) Species from a Room Temperature Ionic Liquid Medium. Inorg. Chem. 2002, 41, 1692–1694. DOI: 10.1021/ic015619w.
  • Joseph, B.; Venkatesan, K.; Nagarajan, K.; Vasudeva Rao, P. Electrowinning of UO2 from Ionic Liquid Medium. Sep. Sci. Technol. 2013, 48, 2506–2511. DOI: 10.1080/01496395.2013.807834.
  • Wellens, S.; Vander Hoogerstraete, T.; Möller, C.; Thijs, B.; Luyten, J.; Binnemans, K. Dissolution of Metal Oxides in an Acid-saturated Ionic Liquid Solution and Investigation of the Back-extraction Behaviour to the Aqueous Phase. Hydrometallurgy. 2014, 144, 27–33. DOI: 10.1016/j.hydromet.2014.01.015.
  • Billard, I.; Gaillard, C.; Hennig, C. Dissolution of UO2, UO3 and of Some Lanthanide Oxides in BumimTf 2 N: Effect of Acid and Water and Formation of UO2(NO3)3−. Dalton Trans. 2007, 4214–4221. DOI:10.1039/b706355e.
  • Wanigasekara, E.; Freiderich, J. W.; Sun, X.-G.; Meisner, R. A.; Luo, H.; Delmau, L. H.; Dai, S.; Moyer, B. A. Tandem Dissolution of UO3 in Amide-based Acidic Ionic Liquid and in Situ Electrodeposition of UO2 with Regeneration of the Ionic Liquid: A Closed Cycle. Dalton Trans. 2016, 45, 10151–10154. DOI: 10.1039/C6DT00873A.
  • Wai, C. M.; Liao, Y.-J.; Liao, W.; Tian, G.; Addleman, R. S.; Quach, D.; Pasilis, S. P. Uranium Dioxide in Ionic Liquid with a tri-n-butylphosphate–HNO3 Complex—dissolution and Coordination Environment. Dalton Trans. 2011, 40, 5039–5045. DOI: 10.1039/c0dt01518k.
  • Wellens, S.; Brooks, N. R.; Thijs, B.; Van Meervelt, L.; Binnemans, K. Carbene Formation upon Reactive Dissolution of Metal Oxides in Imidazolium Ionic Liquids. Dalton Trans. 2014, 43, 3443–3452. DOI: 10.1039/C3DT53024H.
  • Liu, Z.; El Abedin, S. Z.; Endres, F. Dissolution of Zinc Oxide in a Protic Ionic Liquid with the 1-methylimidazolium Cation and Electrodeposition of Zinc from ZnO/ionic Liquid and ZnO/ionic Liquid–water Mixtures. Electrochem. Commun. 2015, 58, 46–50. DOI: 10.1016/j.elecom.2015.06.004.
  • Zarzana, C. A.; Groenewold, G. S.; Benson, M. T.; Delmore, J. E.; Tsuda, T.; Hagiwara, R. Production of Gas-Phase Uranium Fluoroanions via Solubilization of Uranium Oxides in the [1-ethyl-3-methylimidazolium]+[f(hf)2.3]− Ionic Liquid. J. Am. Soc. Mass Spectrom. 2018, 29, 1963–1970. DOI: 10.1007/s13361-018-2006-y.
  • Dupont, D.; Raiguel, S.; Binnemans, K. Sulfonic Acid Functionalized Ionic Liquids for Dissolution of Metal Oxides and Solvent Extraction of Metal Ions. Chem. Commun. 2015, 51, 9006–9009. DOI: 10.1039/C5CC02731D.
  • Dupont, D.; Renders, E.; Binnemans, K. Alkylsulfuric Acid Ionic Liquids: A Promising Class of Strongly Acidic Room-temperature Ionic Liquids. Chem. Commun. 2016, 52, 4640–4643. DOI: 10.1039/C6CC00094K.
  • Dupont, D.; Renders, E.; Raiguel, S.; Binnemans, K. New Metal Extractants and Super-acidic Ionic Liquids Derived from Sulfamic Acid. Chem. Commun. 2016, 52, 7032–7035. DOI: 10.1039/C6CC02350A.
  • Chaumont, A.; Wipff, G. Solvation of Uranyl (II), Europium (III) and Europium (II) Cations in “Basic” Room‐Temperature Ionic Liquids: A Theoretical Study. Chemistry. 2004, 10, 3919–3930. DOI: 10.1002/chem.200400207.
  • Krishna, G. M.; Suneesh, A.; Kumaresan, R.; Venkatesan, K.; Antony, M. Dissolution of U3O8 in 1-butyl-3-methylimidazolium Chloride and Spectroscopic and Electrochemical Behavior of U (VI) in the Resultant Solution. J. Electroanal. Chem. 2017, 795, 51–58. DOI: 10.1016/j.jelechem.2017.04.044.
  • Yao, A.; Xiong, X.; Kang, M.; Guo, Y.; Chen, C.; Chu, T. Direct Dissolution of UO2 in Carboxyl-functionalized Ionic Liquids in the Presence or Absence of Fe-containing Ionic Liquids. Dalton Trans. 2020, 49, 14881–14890. DOI: 10.1039/D0DT02740E.
  • Bonomi, C.; Alexandri, A.; Vind, J.; Panagiotopoulou, A.; Tsakiridis, P.; Panias, D. Scandium and Titanium Recovery from Bauxite Residue by Direct Leaching with a Brønsted Acidic Ionic Liquid. Metals. 2018, 8, 834. DOI: 10.3390/met8100834.
  • Tang, J.; Lv, D.; Xu, C.; Hua, Y.; Zhang, Q.; Niu, P.; Zhu, X. The Effect of Water on the Tin Electrodeposition from [Bmim] HSO4 Ionic Liquid. Int. J. Electrochem. 2018, 2018. DOI: 10.1155/2018/1210394.
  • Verma, P. K.; Mahanty, B.; Ali, S. M.; Mohapatra, P. K. In Situ Preconcentration during the Di-(2-ethylhexyl) Phosphoric Acid-Assisted Dissolution of Uranium Trioxide in an Ionic Liquid: Spectroscopic, Electrochemical, and Theoretical Studies. Inorg. Chem. 2021, 60, 10147–10157. DOI: 10.1021/acs.inorgchem.1c00202.
  • Davris, P.; Balomenos, E.; Panias, D.; Paspaliaris, I. Selective Leaching of Rare Earth Elements from Bauxite Residue (Red Mud), Using a Functionalized Hydrophobic Ionic Liquid. Hydrometallurgy. 2016, 164, 125–135. DOI: 10.1016/j.hydromet.2016.06.012.
  • Schaeffer, N.; Grimes, S.; Cheeseman, C. Interactions between Trivalent Rare Earth Oxides and Mixed [Hbet][tf2n]: H2O Systems in the Development of a One-step Process for the Separation of Light from Heavy Rare Earth Elements. Inorg. Chim. Acta. 2016, 439, 55–60. DOI: 10.1016/j.ica.2015.09.015.
  • Yeh, H.-W.; Tang, Y.-H.; Chen, P.-Y. Electrochemical Study and Extraction of Pb Metal from Pb Oxides and Pb Sulfate Using Hydrophobic Brønsted Acidic Amide-type Ionic Liquid: A Feasibility Demonstration. J. Electroanal. Chem. 2018, 811, 68–77. DOI: 10.1016/j.jelechem.2018.01.031.
  • Droessler, J. Direct Dissolution and Electrochemical Investigation of Cerium and Uranium in Ionic Liquid. 2016. Direct Dissolution and Electrochemical Investigation of Cerium and Uranium in Ionic Liquid.
  • Mohd, N.; Draman, S.; Salleh, M.; Yusof, N. Dissolution of Cellulose in Ionic Liquid: A Review, Proceedings of the 6th International Advances in Applied Physics and Materials Science Congress & Exhibition, AIP Conf. Proc, 1809, İstanbul, Turkey, 020035.
  • Sánchez, P. B.; Tsubaki, S.; Pádua, A. A.; Wada, Y. Kinetic Analysis of Microwave-enhanced Cellulose Dissolution in Ionic Solvents. Phys. Chem. Chem. Phys. 2020, 22, 1003–1010. DOI: 10.1039/C9CP06239D.
  • Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Dissolution of Cellulose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. DOI: 10.1021/ja025790m.
  • Wang, X.; Zhou, J.; Pang, B.; Zhao, D. Rapid Microwave-assisted Ionothermal Dissolution of Cellulose and Its Regeneration Properties. J. Renewable Mater. 2019, 7, 1363–1380. DOI: 10.32604/jrm.2019.08218.
  • Mallik, G.; Malav, R.; Kamath, H. Impact of Microwave Heating Technique on Dissolution of Sintered Thoria Pellets, in: Eleventh annual conference of Indian Nuclear Society on power from thorium status, strategies and directions. V. 1: extended abstracts of contributed papers and programme, 2000, Mumbai, India.
  • Mallik, G.; Malav, R.; Panakkal, J.; Kamath, H. Microwave Processing in MOX Fuel Cycle. Int. J of Nucl. Energy Sci and Technol. 2005, 1, 184–190. DOI: 10.1504/IJNEST.2005.007141.
  • Singh, G.; Kumar, P.; Save, N.; Malav, R.; Mahanty, B.; Das, D.; Mishra, A.; Behere, P.; Afzal, M.; Kumar, A. Impurity Analysis and Dissolution Behaviour of Plutonium Bearing Impure MOX Scrap: An Assessment of Recycling Feasibility. J. Radioanal. Nucl. Chem. 2016, 309, 1159–1168. DOI: 10.1007/s10967-016-4715-7.
  • Singh, G.; Singhal, R.; Malav, R.; Fulzele, A.; Prakash, A.; Afzal, M.; Panakkal, J. A Comparative Study on Dissolution Rate of Sintered (Th–u)o2 Pellets in Nitric Acid by Microwave and Conventional Heating. Anal. Methods. 2011, 3, 622–627. DOI: 10.1039/c0ay00630k.
  • Cao, Y.; Zhang, R.; Cheng, T.; Guo, J.; Xian, M.; Liu, H. Imidazolium-based Ionic Liquids for Cellulose Pretreatment: Recent Progresses and Future Perspectives. Appl. Microbiol. Biotechnol. 2017, 101, 521–532. DOI: 10.1007/s00253-016-8057-8.
  • Mincher, B. J.; Wishart, J. F. The Radiation Chemistry of Ionic Liquids: A Review. Solvent Extr. Ion Exch. 2014, 32, 563–583. DOI: 10.1080/07366299.2014.925687.
  • Qi, M.; Wu, G.; Chen, S.; Liu, Y. Gamma Radiolysis of Ionic Liquid 1-butyl-3-methylimidxazolium Hexafluorophosphate. Radiat. Res. 2007, 167, 508–514. DOI: 10.1667/RR0727.1.
  • Rout, A.; Mishra, S.; Venkatesan, K.; Antony, M.; Pandey, N.; Subramanian, S. Physicochemical and Radiolytic Degradation Properties of Dihexyloctanmide-imidazolium Ionic Liquid. J. Mol. Liq. 2017, 247, 93–99. DOI: 10.1016/j.molliq.2017.09.093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.