255
Views
3
CrossRef citations to date
0
Altmetric
Adsorption

Treatment of water contaminated with petroleum hydrocarbons using a biochar derived from seagrass biomass as low-cost adsorbent: isotherm, kinetics and reusability studies

ORCID Icon, , &
Pages 2358-2373 | Received 02 Jan 2022, Accepted 18 Mar 2022, Published online: 31 Mar 2022

References

  • Alzahrani, M. A.; Rajendran, P. Petroleum Hydrocarbon and Living Organisms. Hydrocarbon Poll. Eff. Environ. 2019. DOI: 10.5772/intechopen.86948.
  • Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl. Biochem. Biotechnol. 2015, 176(3), 670–699. DOI: 10.1007/s12010-015-1603-5.
  • Afshar-Mohajer, N.; Li, C.; Rule, A. M.; Katz, J.; Koehler, K. A Laboratory Study of Particulate and Gaseous Emissions from Crude Oil and Crude Oil-dispersant Contaminated Seawater Due to Breaking Waves. Atmos. Environ. 2018, 179, 177–186. DOI: 10.1016/j.atmosenv.2018.02.017.
  • Latimer, J. S.; Hoffman, E. J.; Hoffman, G.; Fasching, J. L.; Quinn, J. G. Sources of Petroleum Hydrocarbons in Urban Runoff. Water Air Soil Pollut. 1990, 52(1–2), 1–21. DOI: 10.1007/BF00283111.
  • Kuppusamy, S.; Venkateswarlu, K.; Naga Raju Maddela, M. M. Ecological Impacts of Total Petroleum Hydrocarbons. Total. Pet. Hydrocarbons. 2020a, 95–138. DOI: 10.1007/978-3-030-24035-6_5.
  • Kuppusamy, S.; Venkateswarlu, K.; Naga Raju Maddela, M. M. Fate of Total Petroleum Hydrocarbons in the Environment. Total. Pet. Hydrocarbons. 2020b, 57–77. DOI: 10.1007/978-3-030-24035-6_3.
  • Srivastava, M.; Srivastava, A.; Yadav, A.; Rawat, V. Source and Control of Hydrocarbon Pollution. Hydrocarbon Poll. Eff. Environ. 2019. DOI: 10.5772/intechopen.86487.
  • Tasker, T. L.; Burgos, W. D.; Piotrowski, P.; Castillo-Meza, L.; Blewett, T. A. G.; Stallworth, K. B.; Delompré, A.; Goss, P. L. M.; Fowler, G. G.; Vanden Heuvel, L. B., et al. Environmental and Human Health Impacts of Spreading Oil and Gas Wastewater on Roads. Environ. Sci. Technol. 2018, 52(12), 7081–7091. DOI: 10.1021/acs.est.8b00716.
  • Krupcík, J.; Oswald, P.; Oktavec, D.; Armstrong, D. W. Calibration of GC-FID and IR Spectrometric Methods for Determination of High Boiling Petroleum Hydrocarbons in Environmental Samples. Water Air Soil Pollut. 2004, 153(1–4), 329–341. DOI: 10.1023/B:WATE.0000019957.61544.bb.
  • Medjor, W. O.; Akpoveta, V. O.; Adebowale, M. E. Remediation of Hydrocarbons Contaminated Groundwater by Silica Encapsulation Technique. Water-Energy Nexus. 2018, 1(2), 134–141. DOI: 10.1016/j.wen.2018.12.001.
  • Schwartz, G.; Ben-Dor, E.; Eshel, G. Quantitative Analysis of Total Petroleum Hydrocarbons in Soils: Comparison between Reflectance Spectroscopy and Solvent Extraction by 3 Certified Laboratories. Appl. Environ. Soil Sci. 2012, 2012. DOI: 10.1155/2012/751956.
  • Angelova, D.; Uzunov, I.; Uzunova, S.; Gigova, A.; Minchev, L. Kinetics of Oil and Oil Products Adsorption by Carbonized Rice Husks. Chem. Eng. J. 2011, 172(1), 306–311. DOI: 10.1016/j.cej.2011.05.114.
  • Kuppusamy, S.; Venkateswarlu, K.; Naga Raju Maddela, M. M. Impact of Total Petroleum Hydrocarbons on Human Health. Total. Pet. Hydrocarbons. 2020c, 139–165. DOI: 10.1007/978-3-030-24035-6_6.
  • Doshi, B.; Sillanpää, M.; Kalliola, S. A Review of Bio-based Materials for Oil Spill Treatment. Water Res. 2018May15, 135, 262–277. DOI: 10.1016/j.watres.2018.02.034.
  • Ihsanullah, I.; Jamal, A.; Ilyas, M.; Zubair, M.; Khan, G.; Atieh, M. A. Bioremediation of Dyes: Current Status and Prospects. J. Water Process Eng. 2020, 38, 101680. DOI: 10.1016/J.JWPE.2020.101680.
  • Broje, V.; Keller, A. A. Improved Mechanical Oil Spill Recovery Using an Optimized Geometry for the Skimmer Surface. Environ. Sci. Technol. 2006, 40(24), 7914–7918. DOI: 10.1021/es061842m.
  • Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O.; Kokot, S. Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties. J. Porous Mater. 2003, 10(3), 159–170. DOI: 10.1023/A:1027484117065.
  • Ibrahim, A. O.; Adegoke, K. A.; Adegoke, R. O.; AbdulWahab, Y. A.; Oyelami, V. B.; Adesina, M. O. Adsorptive Removal of Different Pollutants Using Metal-organic Framework Adsorbents. J. Mol. Liq. 2021, 333, 115593. DOI: 10.1016/j.molliq.2021.115593.
  • Olga, V. R.; Darina, V. I.; Alexandr, A. I.; Alexandra, А. O. Cleanup of Water Surface from Oil Spills Using Natural Sorbent Materials. Procedia Chem. 2014, 10, 145–150. DOI: 10.1016/j.proche.2014.10.025.
  • Carmody, O.; Frost, R.; Xi, Y.; Kokot, S. Surface Characterisation of Selected Sorbent Materials for Common Hydrocarbon Fuels. Surf. Sci. 2007, 601(9), 2066–2076. DOI: 10.1016/j.susc.2007.03.004.
  • Babaei, A. A.; Niknam, E.; Ansari, A.; Godini, K. Removal of Trihalomethane Precursors from Water Using Activated Carbon Obtained from Oak Wood Residue: Kinetic and Isotherm Investigation of Adsorption Process. Desalin. Water Treat. 2017, 92, 116–127. DOI: 10.5004/DWT.2017.21429.
  • Ghaedi, M.; Ghaedi, A. M.; Negintaji, E.; Ansari, A.; Vafaei, A.; Rajabi, M. Random Forest Model for Removal of Bromophenol Blue Using Activated Carbon Obtained from Astragalus Bisulcatus Tree. J. Ind. Eng. Chem. 2014, 20(4), 1793–1803. DOI: 10.1016/J.JIEC.2013.08.033.
  • Heydari, F.; Ghaedi, M.; Ansari, A.; Ghaedi, A. M. Random Forest Model for Removal of Methylene Blue and lead(II) Ion Using Activated Carbon Obtained from Tamarisk. Desalin. Water Treat. 2015, 57(41), 19273–19291. DOI: 10.1080/19443994.2015.1095124.
  • Akinpelu, A. A.; Nazal, M. K.; Abuzaid, N. Adsorptive Removal of Polycyclic Aromatic Hydrocarbons from Contaminated Water by Biomass from Dead Leaves of Halodule Uninervis: Kinetic and Thermodynamic Studies. Biomass Convers. Biorefin. 2021, 1, 1–13. DOI: 10.1007/S13399-021-01718-0/TABLES/6.
  • Ayawei, N.; Ebelegi, N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. Hindawi J. Chem. 2017, 2017, 1–11. DOI: 10.1155/2017/3039817.
  • Vahabisani, A.; An, C. Use of Biomass-derived Adsorbents for the Removal of Petroleum Pollutants from Water: A Mini-review. Environ Syst Res. 2021, 10(1), 1–10. DOI: 10.1186/S40068-021-00229-1.
  • Vidal, R. R. L.; Desbrières, J.; Borsali, R.; Guibal, E. Oil Removal from Crude Oil-in-saline Water Emulsions Using Chitosan as Biosorbent. Sep. Sci. Technol. 2019, 55(5), 835–847. DOI: 10.1080/01496395.2019.1575879.
  • Yang, X.; Guo, M.; Wu, Y.; Wu, Q.; Zhang, R. Removal of Emulsified Oil from Water by Fruiting Bodies of Macro-Fungus (Auricularia Polytricha). PLOS ONE. 2014, 9(4), e95162. DOI: 10.1371/JOURNAL.PONE.0095162.
  • Qurban, M. A. B.; Karuppasamy, M.; Krishnakumar, P. K.; Garcias-Bonet, N.; Duarte, C. M. Seagrass Distribution, Composition and Abundance along the Saudi Arabian Coast of Red Sea. Oceanogr. Biol. Aspects Red Sea. 2019, 367–385. DOI: 10.1007/978-3-319-99417-8_20.
  • Nazal, M. K.; Gijjapu, D. R.; Abuzaid, N. Effective Removal of Methylated Phenol and Chlorinated Phenol from Aqueous Solutions Using a New Activated Carbon Derived from Halodule Uninervis Waste. Colloid Interface Sci. Commun. 2021, 41, 100370. DOI: 10.1016/J.COLCOM.2021.100370.
  • Atta, A. M. Electric Desalting and Dewatering of Crude Oil Emulsion Based on Schiff Base Polymers as Demulsifier. Int. J. Electrochem. Sci. 2013, 8, 9474–9498.
  • Ghaedi, M.; Ansari, A.; Habibi, M. H.; Asghari, A. R. Removal of Malachite Green from Aqueous Solution by Zinc Oxide Nanoparticle Loaded on Activated Carbon: Kinetics and Isotherm Study. J. Ind. Eng. Chem. 2014, 20(1), 17–28. DOI: 10.1016/J.JIEC.2013.04.031.
  • Okiel, K.; El-Sayed, M.; El-Kady, M. Y. Treatment of Oil–water Emulsions by Adsorption onto Activated Carbon, Bentonite and Deposited Carbon. Egypt. J. Pet. 2011, 20(2), 9–15. DOI: 10.1016/j.ejpe.2011.06.002.
  • Proctor, A.; Toro-Vazquez, J. F. The Freundlich Isotherm in Studying Adsorption in Oil Processing. J. Am. Oil Chem. Soc. 2009, 209–219. DOI: 10.1016/B978-1-893997-91-2.50016-X.
  • Temkin, M.; Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Phys. chim. URSS. 1940, 12(3), 217–222. Retrieved from https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1523600
  • Crini, G.; Peindy, H. N.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (Malachite Green) from Aqueous Solutions by Adsorption Using Cyclodextrin-based Adsorbent: Kinetic and Equilibrium Studies. Sep. Purif. Technol. 2007, 53(1), 97–110. DOI: 10.1016/j.seppur.2006.06.018.
  • Ho, Y. S.; McKay, G. Pseudo-second Order Model for Sorption Processes. Process Biochem. 1999, 34(5), 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Tien, C.; Ramarao, B. V. On the Significance and Utility of the Lagergren Model and the Pseudo Second-order Model of Batch Adsorption. Sep. Sci. Technol. 2017, 52(6), 975–986. DOI: 10.1080/01496395.2016.1274327.
  • Chien, S. H.; Clayton, W. R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil Sci. Soc. Am. J. 1980, 44(2), 265–268. DOI: 10.2136/SSSAJ1980.03615995004400020013X.
  • Elmorsi, R. R. E.-W.; Shehab El-Dein, S. T.; Lotfy, W. A.; Rashwan, H. R.; Nagah, W. E.; Shaaban, M.; Sayed Ahmed, S. A.; El-Sherif, S. A.; Abou-El-Sherbini, I. Y.; S, K. Adsorption of Methylene Blue and Pb2+ by Using Acid-activated Posidonia Oceanica Waste. Sci. Rep. 2019, 9(1), 1–12. DOI: 10.1038/s41598-019-39945-1.
  • Asimakopoulos, G.; Baikousi, M.; Salmas, C.; Bourlinos, A. B.; Zboril, R.; Karakassides, M. A. Advanced Cr(VI) Sorption Properties of Activated Carbon Produced via Pyrolysis of the “Posidonia Oceanica” Seagrass. J. Hazard. Mater. 2021, 405. DOI: 10.1016/J.JHAZMAT.2020.124274.
  • Müller, B. R. Effect of Particle Size and Surface Area on the Adsorption of Albumin-bonded Bilirubin on Activated Carbon. Carbon. 2010, 48(12), 3607–3615. DOI: 10.1016/J.CARBON.2010.06.011.
  • Revellame, E. D.; Fortela, D. L.; Sharp, W.; Hernandez, R.; Zappi, M. E. Adsorption Kinetic Modeling Using Pseudo-first Order and Pseudo-second Order Rate Laws: A Review. Cleaner Eng. Technol. 2020, 1, 100032. DOI: 10.1016/J.CLET.2020.100032.
  • Weber, W. J., Jr.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanitary Eng. Div. 1963, 89(2), 31–59. DOI: 10.1061/JSEDAI.0000430.
  • Nazal, M. K.; Khaled, M.; Atieh, M. A.; Aljundi, I. H.; Oweimreen, G. A.; Abulkibash, A. M. The Nature and Kinetics of the Adsorption of Dibenzothiophene in Model Diesel Fuel on Carbonaceous Materials Loaded with Aluminum Oxide Particles. Arabian J. Chem. 2019, 12(8), 3678–3691. DOI: 10.1016/J.ARABJC.2015.12.003.
  • Ahmad, A. L.; Sumathi, S.; Hameed, B. H. Adsorption of Residue Oil from Palm Oil Mill Effluent Using Powder and Flake Chitosan: Equilibrium and Kinetic Studies. Water Res. 2005, 39(12), 2483–2494. DOI: 10.1016/J.WATRES.2005.03.035.
  • Nazal, M. K.; Rao, D.; Abuzaid, N. First Investigations on Removal of Nitrazepam from Water Using Biochar Derived from Macroalgae Low-cost Adsorbent: Kinetics, Isotherms and Thermodynamics Studies. Water Pract. Technol. 2021, 16(3), 946–960. DOI: 10.2166/WPT.2021.040.
  • Arabzadeh, S.; Ghaedi, M.; Ansari, A.; Taghizadeh, F.; Rajabi, M. Comparison of Nickel Oxide and Palladium Nanoparticle Loaded on Activated Carbon for Efficient Removal of Methylene Blue: Kinetic and Isotherm Studies of Removal Process. Human Exp. Toxicol. 2015, 34(2), 153–169. DOI: 10.1177/0960327114532383.
  • Ji, H.; Xie, W.; Liu, W.; Liu, X.; Zhao, D. Sorption of Dispersed Petroleum Hydrocarbons by Activated Charcoals: Effects of Oil Dispersants. Environ. Pollut. 2020, 256, 113416. DOI: 10.1016/J.ENVPOL.2019.113416.
  • Tursi, A.; De Vietro, N.; Beneduci, A.; Milella, A.; Chidichimo, F.; Fracassi, F.; Chidichimo, G. Low Pressure Plasma Functionalized Cellulose Fiber for the Remediation of Petroleum Hydrocarbons Polluted Water. J. Hazard. Mater. 2019, 373, 773–782. DOI: 10.1016/J.JHAZMAT.2019.04.022.
  • Saremnia, B.; Esmaeili, A.; Sohrabi, M. R. Removal of Total Petroleum Hydrocarbons from Oil Refinery Waste Using Granulated NaA Zeolite Nanoparticles Modified with Hexadecyltrimethylammonium Bromide. Can. J. Chem. 2015, 94(2), 163–169. DOI: 10.1139/CJC-2015-0390/ASSET/IMAGES/LARGE/CJC-2015-0390CON.JPEG.
  • Moussavi, G.; Bagheri, A. Removal of Petroleum Hydrocarbons from Contaminated Groundwater by the Combined Technique of Adsorption onto Perlite Followed by the O3/H2O2 Process. Environ. Technol. 2012, 33(16), 1905–1912. DOI: 10.1080/09593330.2011.650223.
  • Campo, R.; Giustra, M. G.; De Marchis, M.; Freni, G.; Di Bella, G. Characterization and Treatment Proposals of Shipboard Slop Wastewater Contaminated by Hydrocarbons. Water. 2017, 9(8), 581. DOI: 10.3390/W9080581.
  • Asgari, A. R.; Nabizadeh, R.; Mahvi, A. H.; Nasseri, S.; Dehghani, M. H.; Nazmara, S.; Yaghmaeian, K. Remediation of Total Petroleum Hydrocarbons Using Combined In-vessel Composting ‎and Oxidation by Activated Persulfate. Global J. Environ. Sci. Manage. 2017, 3(4), 373–384. DOI: 10.22034/GJESM.2017.03.04.004.
  • Elanchezhiyan, S. S. D.; Sivasurian, N.; Meenakshi, S. Recovery of Oil from Oil-in-water Emulsion Using Biopolymers by Adsorptive Method. Int. J. Biol. Macromol. 2014, 70, 399–407. DOI: 10.1016/J.IJBIOMAC.2014.07.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.