211
Views
26
CrossRef citations to date
0
Altmetric
Adsorption

Y-Y microfluidic polymer/salt aqueous two-phase system for optimization of dye extraction: Evaluation of channel geometry

, &
Pages 2471-2481 | Received 06 Dec 2021, Accepted 21 Mar 2022, Published online: 03 Apr 2022

References

  • Mittal, H.; Al Alili, A.; Morajkar, P. P.; Alhassan, S. M. Graphene Oxide Crosslinked Hydrogel Nanocomposites of Xanthan Gum for the Adsorption of Crystal Violet Dye. J. Mol. Liq. 2021, 323, 115034. DOI: 10.1016/j.molliq.2020.115034.
  • Tran, V. A.; Kadam, A. N.; Lee, S. W. Adsorption-assisted Photocatalytic Degradation of Methyl Orange Dye by Zeolite-imidazole-framework-derived Nanoparticles. J. Alloys Compd. 2020, 835, 155414. DOI: 10.1016/j.jallcom.2020.155414.
  • Vigneshwaran, S.; Sirajudheen, P.; Karthikeyan, P.; Meenakshi, S. Fabrication of Sulfur-doped Biochar Derived from Tapioca Peel Waste with Superior Adsorption Performance for the Removal of Malachite Green and Rhodamine B Dyes. Surf. Interfaces. 2021, 23, 100920. DOI: 10.1016/j.surfin.2020.100920.
  • Hussain, S.; Kamran, M.; Khan, S. A.; Shaheen, K.; Shah, Z.; Suo, H.; Khan, Q.; Shah, A. B.; Rehman, W. U.; Al-Ghamdi, Y. O., et al. Adsorption, Kinetics and Thermodynamics Studies of Methyl Orange Dye Sequestration through Chitosan Composites Films. Int. J. Biol. Macromol. 2021, 168, 383–394. DOI: 10.1016/j.ijbiomac.2020.12.054.
  • Shayesteh, H.; Raji, F.; Kelishami, A. R. Influence of the Alkyl Chain Length of Surfactant on Adsorption Process: A Case Study. Surf. Interfaces. 2021, 22, 100806. DOI: 10.1016/j.surfin.2020.100806.
  • Rahman-Setayesh, M. R.; Rahbar-Kelishami, A.; Shayesteh, H. Equilibrium, Kinetic, Thermodynamic Applications for Methylene Blue Removal Using Buxus Sempervirens Leaf Powder as a Powerful Low-cost Adsorbent. J. Part. Sci. Technol. 2020, 5, 161–170. DOI: 10.22104/jpst.2020.3909.1160.
  • Sarbisheh, F.; Norouzbeigi, R.; Hemmati, F.; Shayesteh, H. Application of Response Surface Methodology for Modeling and Optimization of Malachite Green Adsorption by Modified Sphagnum Peat Moss as a Low Cost Biosorbent, Desalin. Water. Treat. 2017, 59, 230–242. DOI: 10.5004/dwt.2016.1728.
  • Ghaedi, M.; Ghaedi, A. M.; Mirtamizdoust, B.; Agarwal, S.; Gupta, V. K. Simple and Facile Sonochemical Synthesis of Lead Oxide Nanoparticles Loaded Activated Carbon and Its Application for Methyl Orange Removal from Aqueous Phase. J. Mol. Liq. 2016, 213, 48–57. DOI: 10.1016/j.molliq.2015.09.051.
  • Gapusan, R. B.; Balela, M. D. L. Adsorption of Anionic Methyl Orange Dye and lead(II) Heavy Metal Ion by Polyaniline-kapok Fiber Nanocomposite. Mater. Chem. Phys. 2020, 243, 122682. DOI: 10.1016/j.matchemphys.2020.122682.
  • Bai, Y. N.; Wang, X. N.; Zhang, F.; Wu, J.; Zhang, W.; Lu, Y. Z.; Fu, L.; Lau, T. C.; Zeng, R. J. High-rate Anaerobic Decolorization of Methyl Orange from Synthetic Azo Dye Wastewater in a Methane-based Hollow Fiber Membrane Bioreactor. J. Hazard. Mater. 2020, 388, 121753. DOI: 10.1016/j.jhazmat.2019.121753.
  • Filice, S.; D’Angelo, D.; Libertino, S.; Nicotera, I.; Kosma, V.; Privitera, V.; Scalese, S. Graphene Oxide and Titania Hybrid Nafion Membranes for Efficient Removal of Methyl Orange Dye from Water. Carbon. 2015, 82, 489–499. DOI: 10.1016/j.carbon.2014.10.093.
  • Baneshi, M. M.; Ghaedi, A. M.; Vafaei, A.; Emadzadeh, D.; Lau, W. J.; Marioryad, H.; Jamshidi, A. A High-flux P84 Polyimide Mixed Matrix Membranes Incorporated with Cadmium-based Metal Organic Frameworks for Enhanced Simultaneous Dyes Removal: Response Surface Methodology. Environ. Res. 2020, 183, 109278. DOI: 10.1016/j.envres.2020.109278.
  • Dhir, R. Photocatalytic Degradation of Methyl Orange Dye under UV Irradiation in the Presence of Synthesized PVP Capped Pure and Gadolinium Doped ZnO Nanoparticles. Chem. Phys. Lett. 2020, 746, 137302. DOI: 10.1016/j.cplett.2020.137302.
  • Gerawork, M. Photodegradation of Methyl Orange Dye by Using Zinc Oxide – Copper Oxide Nanocomposite. Optik (Stuttg). 2020, 216, 164864. DOI: 10.1016/j.ijleo.2020.164864.
  • Habiba, U.; Siddique, T. A.; Joo, T. C.; Salleh, A.; Ang, B. C.; Afifi, A. M. Synthesis of Chitosan/polyvinyl Alcohol/zeolite Composite for Removal of Methyl Orange, Congo Red and chromium(VI) by Flocculation/adsorption, Carbohydr. Polym. 2017, 157, 1568–1576. DOI: 10.1016/j.carbpol.2016.11.037.
  • Sorayyaei, S.; Raji, F.; Rahbar-Kelishami, A.; Ashrafizadeh, S. N. Combination of Electrocoagulation and Adsorption Processes to Remove Methyl Orange from Aqueous Solution. Environ. Technol. Innovations. 2021, 24, 102018. DOI: 10.1016/j.eti.2021.102018.
  • Huong, D. T. M.; Liu, B. L.; Chai, W. S.; Show, P. L.; Tsai, S. L.; Chang, Y. K. Highly Efficient Dye Removal and Lysozyme Purification Using Strong and Weak Cation-exchange Nanofiber Membranes. Int. J. Biol. Macromol. 2020, 165, 1410–1421. DOI: 10.1016/j.ijbiomac.2020.10.034.
  • Paul Guin, J.; Bhardwaj, Y. K.; Varshney, L. Mineralization and Biodegradability Enhancement of Methyl Orange Dye by an Effective Advanced Oxidation Process. Appl. Radiat. Isot. 2017, 122, 153–157. DOI: 10.1016/j.apradiso.2017.01.018.
  • Doumbi, R. T.; Noumi, G. B. Dip Coating Deposition of Manganese Oxide Nanoparticles on Graphite by Sol Gel Technique for the Indirect Electrochemical Oxidation of Methyl Orange Dye: Parameter’s Optimization Using Box-behnken Design. Case Stud. Chem. Environ. Eng. 2021, 3, 100068. DOI: 10.1016/j.cscee.2020.100068.
  • Ghaedi, M.; Roosta, M.; Ghaedi, A. M.; Ostovan, A.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Removal of Methylene Blue by Silver Nanoparticles Loaded on Activated Carbon by an Ultrasound-assisted Device: Optimization by Experimental Design Methodology. Res. Chem. Intermed. 2018, 44, 2929–2950. DOI: 10.1007/s11164-015-2285-x.
  • Dehghanian, N.; Ghaedi, M.; Ansari, A.; Ghaedi, A.; Vafaei, A.; Asif, M.; Agarwal, S.; Tyagi, I.; Gupta, V. K. A Random Forest Approach for Predicting the Removal of Congo Red from Aqueous Solutions by Adsorption onto Tin Sulfide Nanoparticles Loaded on Activated Carbon, Desalin. Water. Treat. 2016, 57, 9272–9285. DOI: 10.1080/19443994.2015.1027964.
  • Pan, Y.; Wang, Y.; Zhou, A.; Wang, A.; Wu, Z.; Lv, L.; Li, X.; Zhang, K.; Zhu, T. Removal of Azo Dye in an Up-flow Membrane-less Bioelectrochemical System Integrated with Bio-contact Oxidation Reactor. Chem. Eng. J. 2017, 326, 454–461. DOI: 10.1016/j.cej.2017.05.146.
  • Silvério, S. C.; Rodriguez, O.; Teixeira, J. A.; Macedo, E. A. Solute Partitioning in Polymer-salt ATPS: The Collander Equation. Fluid Phase Equilib. 2010, 296, 173–177. DOI: 10.1016/j.fluid.2010.04.009.
  • Karimzadeh, M.; Khatibi, M.; Ashrafizadeh, S. N. Impacts of the Temperature-dependent Properties on Ion Transport Behavior in Soft Nanochannels. Int. Commun. Heat Mass Transf. 2021, 129, 105728. DOI: 10.1016/j.icheatmasstransfer.2021.105728.
  • Alinezhad, A.; Khatibi, M.; Nezameddin Ashrafizadeh, S. Impact of Asymmetry Soft Layers and Ion Partitioning on Ionic Current Rectification in Bipolar Nanochannels. J. Mol. Liq. 2022, 347, 118324. DOI: 10.1016/j.molliq.2021.118324.
  • Raji, F.; Rahbar-Kelishami, A. Evaluation of Mass Transfer Rate in Aqueous Two-phase Systems: Effect of Microchannel Width for Bovine Serum Albumin Extraction. Chem. Eng. Process. - Process Intensif. 2021, 163. DOI: 10.1016/j.cep.2021.108370.
  • Fan, Y. Q.; Wang, H. L.; Gao, K. X.; LIU, J. J.; Chai, D. P.; Zhang, Y. J. Applications of Modular Microfluidics Technology. Chin. J. Anal. Chem. 2018, 46, 1863–1871. DOI: 10.1016/S1872-2040(18)61126-0.
  • Ciceri, D.; Perera, J. M.; Stevens, G. W. The Use of Microfluidic Devices in Solvent Extraction. J. Chem. Technol. Biotechnol. 2014, 89, 771–786. DOI: 10.1002/jctb.4318.
  • Khatibi, M.; Ashrafizadeh, S. N.; Sadeghi, A. Covering the Conical Nanochannels with Dense Polyelectrolyte Layers Significantly Improves the Ionic Current Rectification. Anal. Chim. Acta. 2020, 1122, 48–60. DOI: 10.1016/j.aca.2020.05.011.
  • Foroozan Jahromi, P.; Karimi-Sabet, J.; Amini, Y.; Fadaei, H. Pressure-driven Liquid-liquid Separation in Y-shaped Microfluidic Junctions. Chem. Eng. J. 2017, 328, 1075–1086. DOI: 10.1016/j.cej.2017.07.096.
  • Farahani, A.; Rahbar-Kelishami, A.; Shayesteh, H. Microfluidic Solvent Extraction of Cd(II) in Parallel Flow Pattern: Optimization, Ion Exchange, and Mass Transfer Study, Sep. Purif. Technol. 2021, 258, 118031. DOI: 10.1016/j.seppur.2020.118031.
  • Raji, F.; Rahbar-Kelishami, A. Evaluation of Biocompatible Aqueous Two-phase Systems with the Double Interface for the Recovery of Biomolecules. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 624, 126823.
  • Borges, G. A.; Silva, L. P.; Penido, J. A.; de Lemos, L. R.; Mageste, A. B.; Rodrigues, G. D. A Method for Dye Extraction Using an Aqueous Two-phase System: Effect of Co-occurrence of Contaminants in Textile Industry Wastewater. J. Environ. Manage. 2016, 183, 196–203. DOI: 10.1016/j.jenvman.2016.08.056.
  • de Alvarenga, J. M.; Fideles, R. A.; da Silva, M. V.; Murari, G. F.; Taylor, J. G.; de Lemos, L. R.; Dias Rodrigues, G.; Mageste, A. B. Partition Study of Textile Dye Remazol Yellow Gold RNL in Aqueous Two-phase Systems. Fluid Phase Equilib. 2015, 391, 1–8. DOI: 10.1016/j.fluid.2015.01.022.
  • Chen, X.; Li, F.; Asumana, C.; Yu, G. Extraction of Soluble Dyes from Aqueous Solutions with Quaternary Ammonium-based Ionic Liquids, Sep. Purif. Technol. 2013, 106, 105–109. DOI: 10.1016/j.seppur.2013.01.002.
  • Kuban, P.; Berg, J.; Dasgupta, P. K. Vertically Stratified Flows in Microchannels. Computational Simulations and Applications to Solvent Extraction and Ion Exchange. Anal. Chem. 2003, 75, 3549–3556. DOI: 10.1021/ac0340713.
  • Surmeian, M.; Hibara, A.; Slyadnev, M.; Uchiyama, K.; Hisamoto, H.; Kitamori, T. Distribution of Methyl Red on the Water-organic Liquid Interface in a Microchannel. Anal. Lett. 2001, 34, 1421–1429. DOI: 10.1081/AL-100104916.
  • Barikbin, Z.; Rahman, M. T.; Parthiban, P.; Rane, A. S.; Jain, V.; Duraiswamy, S.; Lee, S. H. S.; Khan, S. A. Ionic Liquid-based Compound Droplet Microfluidics for “On-drop” Separations and Sensing. Lab Chip. 2010, 10, 2458–2463. DOI: 10.1039/c004853d.
  • Kikutani, Y.; Mawatari, K.; Hibara, A.; Kitamori, T. Circulation Microchannel for Liquid-liquid Microextraction. Microchim. Acta. 2009, 164, 241–247. DOI: 10.1007/s00604-008-0065-7.
  • Abbasi, A.; Rahbar-Kelishami, A.; Ghasemi, M. J. Development of a Microfluidic-chip System Based on Parallel Flow for Intensified Gd(III) Extraction from Nitrate Media Using Cationic Extractant. J. Rare Earths. 2018, 36, 1198–1204. DOI: 10.1016/j.jre.2018.03.024.
  • Nascimento, R. G.; Fontan, R. D. C. I.; Ferreira Bonomo, R. C.; Veloso, C. M.; Castro, S. D. S.; Santos, L. S. Liquid-Liquid Equilibrium of Two-Phase Aqueous Systems Composed of PEG 400, Na2SO4, and Water at Different Temperatures and pH Values: Correlation and Thermodynamic Modeling. J. Chem. Eng. Data. 2018, 63, 1352–1362. DOI: 10.1021/acs.jced.7b00947.
  • Silva, D. F. C.; Azevedo, A. M.; Fernandes, P.; Chu, V.; Conde, J. P.; Aires-Barros, M. R. Determination of Aqueous Two Phase System Binodal Curves Using a Microfluidic Device. J. Chromatogr. A. 2014, 1370, 115–120. DOI: 10.1016/j.chroma.2014.10.035.
  • Mastiani, M.; Firoozi, N.; Petrozzi, N.; Seo, S.; Kim, M. Polymer-Salt Aqueous Two-Phase System (ATPS) Micro-Droplets for Cell Encapsulation. Sci. Rep. 2019, 9, 1–9. DOI: 10.1038/s41598-019-51958-4.
  • Ghaffari, S.; Rahbar Shahrouzi, J.; Towfighi, F.; Baradar Khoshfetrat, A. Partitioning of Cefazolin in Aqueous Two-phase Systems Containing Poly (Ethylene Glycol) and Sodium Salts (Citrate, Tartrate, and Sulphate). Fluid Phase Equilib. 2019, 488, 54–61. DOI: 10.1016/j.fluid.2019.01.010.
  • Song, Y. S.; Choi, Y. H.; Kim, D. H. Microextraction in a Tetrabutylammonium Bromide/ammonium Sulfate Aqueous Two-phase System and Electrohydrodynamic Generation of a Micro-droplet. J. Chromatogr. A. 2007, 1162, 180–186. DOI: 10.1016/j.chroma.2007.06.032.
  • Walker, G. M.;. Microfluidic Aqueous Two-Phase Systems; Springer, 2017; p 255–278. doi:10.1007/978-3-319-44139-9_9
  • Jalilvand, P.; Rahbar-Kelishami, A.; Mohammadi, T.; Shayesteh, H. Optimizing of Malachite Green Extraction from Aqueous Solutions Using Hydrophilic and Hydrophobic Nanoparticles. J. Mol. Liq. 2020, 308. DOI: 10.1016/j.molliq.2020.113014.
  • Azarang, A.; Rahbar-Kelishami, A.; Norouzbeigi, R.; Shayesteh, H. Modeling and Optimization of Pertraction Performance of Heavy Metal Ion from Aqueous Solutions Using M2EHPA/D2EHPA: Application of Response Surface Methodology. Environ. Technol. Innovations. 2019, 15, 100432. DOI: 10.1016/j.eti.2019.100432.
  • Heidari, B. S.; Oliaei, E.; Shayesteh, H.; Davachi, S. M.; Hejazi, I.; Seyfi, J.; Bahrami, M.; Rashedi, H. Simulation of Mechanical Behavior and Optimization of Simulated Injection Molding Process for PLA Based Antibacterial Composite and Nanocomposite Bone Screws Using Central Composite Design. J. Mech. Behav. Biomed. Mater. 2017, 65, 160–176. DOI: 10.1016/j.jmbbm.2016.08.008.
  • Farajvand, M.; Kiarostami, V.; Davallo, M.; Ghaedi, A. Optimization of Solvent Terminated Dispersive Liquid–Liquid Microextraction of Copper Ions in Water and Food Samples Using Artificial Neural Networks Coupled Bees Algorithm, Bull. Environ. Contam. Toxicol. 2018, 100, 402–408. DOI: 10.1007/s00128-017-2263-7.
  • Lu, Y.; Xia, Y.; Luo, G. Phase Separation of Parallel Laminar Flow for Aqueous Two Phase Systems in Branched Microchannel, Microfluid. Nanofluidics. 2011, 10, 1079–1086. DOI: 10.1007/s10404-010-0736-7.
  • Espitia-Saloma, E.; Vázquez-Villegas, P.; Aguilar, O.; Rito-Palomares, M. Continuous Aqueous Two-phase Systems Devices for the Recovery of Biological Products. Food Bioprod. Process. 2014, 92, 101–112. DOI: 10.1016/j.fbp.2013.05.006.
  • Soares, R. R. G.; Novo, P.; Azevedo, A. M.; Fernandes, P.; Aires-Barros, M. R.; Chu, V.; Conde, J. P. On-chip Sample Preparation and Analyte Quantification Using a Microfluidic Aqueous Two-phase Extraction Coupled with an Immunoassay. Lab Chip. 2014, 14, 4284–4294. DOI: 10.1039/c4lc00695j.
  • Silva, D. F. C.; Azevedo, A. M.; Fernandes, P.; Chu, V.; Conde, J. P.; Aires-Barros, M. R. Design of a Microfluidic Platform for Monoclonal Antibody Extraction Using an Aqueous Two-phase System. J. Chromatogr. A. 2012, 1249, 1–7. DOI: 10.1016/j.chroma.2012.05.089.
  • Wang, Y.; Liu, Y.; Han, J.; Hu, S. Application of Water-miscible Alcohol-based Aqueous Two-phase Systems for Extraction of Dyes, Sep. Sci. Tech. 2011, 46, 1283–1288. DOI: 10.1080/01496395.2010.551168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.