209
Views
1
CrossRef citations to date
0
Altmetric
Adsorption

Removal of Cr(VI) and Pb(II) from aqueous solution using Mg/Al layered double hydroxides-mordenite composite

, , ORCID Icon, , &
Pages 2432-2445 | Received 05 Mar 2022, Accepted 21 Apr 2022, Published online: 06 May 2022

References

  • Mahar, A.; Wang, P.; Ali, A.; Awasthi, M. K.; Lahori, A. H.; Wang, Q.; Ronghua, L.; Zhang, Z. Challenges and Opportunities in the Phytoremediation of Heavy Metals Contaminated Soils: A Review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. doi: 10.1016/j.ecoenv.2015.12.023
  • Jadhav, S. A.; Patil, V. S.; Shinde, P. S.; Thoravat, S. S.; Patil, P. S. A Short Review on Recent Progress in Mesoporous Silicas for the Removal of Metal Ions from Water. Chem. Pap. 2020, 74, 4143–4157. doi: 10.1007/s11696-020-01255-6
  • Shrivastava, R.; Upreti, R. K.; Seth, P. K.; Chaturvedi, U. C. Effects of Chromium on the Immune System. FEMS Immunol. Med. Microbiol. 2002, 34, 1–7. doi: 10.1111/j.1574-695X.2002.tb00596.x
  • Vinuth, M.; Madhukara Naik, M.; Karthik, K.; Bhojya Naik, H. S.; Hemakumar, K. H. Detailed Study on Reduction of Hazardous Cr(VI) at Acidic PH Using Modified Montmorillonite Fe(II)-Mt under Ambient Conditions. Res. Chem. Intermed. 2019, 45, 2357–2368. doi: 10.1007/s11164-019-03739-x
  • Wang, X. S.; Lei, H.; Hai Qiong, H.; Wang, J. Effect of Temperature on the Pb(II) Removal from Single Aqueous Solutions by a Locally Natural Mordenite: Equilibrium and Kinetic Modeling. Sep. Sci. Technol. 2008, 43, 908–922. doi: 10.1080/01496390701870697
  • Bezerra, B. G. P.; Bieseki, L.; da Silva, D. R.; Pergher, S. B. C. Development of a Zeolite A/LDH Composite for Simultaneous Cation and Anion Removal. Materials (Basel). 2019, 12(4), 661.
  • Guo, L.; Zhang, X.; Chen, Q.; Ruan, C.; Leng, Y. Enhanced Removal Performance by the Core-Shell Zeolites/MgFe-Layered Double Hydroxides (Ldhs) for Municipal Wastewater Treatment. Environ. Sci. Pollut. Res. 2016, 23, 6749–6757. doi: 10.1007/s11356-015-5910-8
  • Acharya, R.; Naik, B.; Parida, K. M. Adsorption of Cr (VI) and Textile Dyes on to Mesoporous Silica, Titanate Nanotubes, and Layered Double Hydroxides. In Nanomater. Wet Process. Textiles. 2018; pp. 219–260. doi:10.1002/9781119459804.ch7
  • Naicker, C.; Nombona, N.; van Zyl, W. E. Fabrication of Novel Magnetic Chitosan/Graphene-Oxide/Metal Oxide Nanocomposite Beads for Cr(VI) Adsorption. Chem. Pap. 2020, 74, 529–541. doi: 10.1007/s11696-019-00895-7
  • Narayanan, S.; Tamizhdurai, P.; Mangesh, V. L.; Ragupathi, C.; Santhana Krishnan, P.; Ramesh, A. Recent Advances in the Synthesis and Applications of Mordenite Zeolite - Review. RSC Adv. 2020, 11, 250–267. doi: 10.1039/D0RA09434J
  • Wahono, S. K.; Stalin, J.; Addai-Mensah, J.; Skinner, W.; Vinu, A.; Vasilev, K. Physico-Chemical Modification of Natural Mordenite-Clinoptilolite Zeolites and Their Enhanced CO2 Adsorption Capacity. Microporous Mesoporous Mater. 2020, 294, 109871. doi: 10.1016/j.micromeso.2019.109871
  • Turkyilmaz, H.; Kartal, T.; Yildiz, S. Y. Optimization of Lead Adsorption of Mordenite by Response Surface Methodology: Characterization and Modification. J. Environ. Heal. Sci. Eng. 2014, 12, 1–9.
  • Barragán, P.; Perfecto, M. M.; Guadalupe, M.; Olguín, M. T. Cadmium Sorption by Sodium and Thiourea-Modified Zeolite-Rich Tuffs. J. Environ. Sci. 2017, 52, 39–48. doi: 10.1016/j.jes.2016.03.015
  • Nakamoto, K.; Ohshiro, M.; Kobayashi, T. Mordenite Zeolite—Polyethersulfone Composite Fibers Developed for Decontamination of Heavy Metal Ions. J. Environ. Chem. Eng. 2017, 5, 513–525. doi: 10.1016/j.jece.2016.12.031
  • Deng, L.; Shi, Z.; Peng, X. Adsorption of Cr(VI) onto a Magnetic CoFe2O4/MgAl-LDH Composite and Mechanism Study. RSC Adv. 2015, 5, 49791–49801. doi: 10.1039/C5RA06178D
  • Xin Yao, Y.; Luo, T.; Jia, Y.; Ren Xia, X.; Gao, C.; Zhang, Y. X.; Liu, J. H.; Huang, X. J. Three-Dimensional Hierarchical Flower-like Mg-Al-Layered Double Hydroxides: Highly Efficient Adsorbents for As(v) and Cr(vi) Removal. Nanoscale 2012, 4, 3466–3474. doi: 10.1039/c2nr30457k
  • Wan, S.; Wang, S.; Yuncong, L.; Gao, B. Functionalizing Biochar with Mg–Al and Mg–Fe Layered Double Hydroxides for Removal of Phosphate from Aqueous Solutions. J. Ind. Eng. Chem. 2017, 47, 246–253. doi: 10.1016/j.jiec.2016.11.039
  • Goh, K. H.; Lim, T. T.; Dong, Z. Application of Layered Double Hydroxides for Removal of Oxyanions: A Review. Water Res. 2008, 42, 1343–1368. doi: 10.1016/j.watres.2007.10.043
  • Kanezaki, E. Preparation of Layered Double Hydroxides. Interface Sci. Technol. 2004, 1, 345–373.
  • Chao, H. P.; Wang, Y. C.; Tran, H. N. Removal of Hexavalent Chromium from Groundwater by Mg/Al-Layered Double Hydroxides Using Characteristics of in-Situ Synthesis. Environ. Pollut. 2018, 243, 620–629. doi: 10.1016/j.envpol.2018.08.033
  • Chen, S.; Huang, Y.; Han, X.; Zeliang, W.; Lai, C.; Wang, J.; Deng, Q.; Zeng, Z.; Deng, S. Simultaneous and Efficient Removal of Cr(VI) and Methyl Orange on LDHs Decorated Porous Carbons. Chem. Eng. J. 2018, 352, 306–315. doi: 10.1016/j.cej.2018.07.012
  • Zhang, X.; Lei, Y.; Yuan, Y.; Gao, J.; Jiang, Y.; Zhouying, X.; Zhao, S. Enhanced Removal Performance of Cr(VI) by the Core-Shell Zeolites/Layered Double Hydroxides (Ldhs) Synthesized from Different Metal Compounds in Constructed Rapid Infiltration Systems. Environ. Sci. Pollut. Res. 2018, 25, 9759–9770. doi: 10.1007/s11356-018-1303-0
  • Nguyen, T. D.; Phuong, N. T. M.; Van, H. T.; Nguyen, V. Q.; Nguyen, L. H.; Nguyen, T. D.; Nguyen, T. H. V.; Chu, T. H. H.; Nguyen, T. H.; Ha, L. T., et al. Adsorption Removal of Ammonium from Aqueous Solution Using Mg/Al Layered Double Hydroxides-Zeolite Composite. Environ. Technol. Innovations 2021, 25, 102244. doi: 10.1016/j.eti.2021.102244
  • Yamada, H.; Watanabe, Y.; Hashimoto, T.; Tamura, K.; Ikoma, T.; Yokoyama, S.; Tanaka, J.; Moriyoshi, Y. Synthesis and Characterization of Linde A Zeolite Coated with A Layered Double Hydoxide. J. Eur. Ceram. Soc. 2006, 26, 463–467. doi: 10.1016/j.jeurceramsoc.2005.07.018
  • Yuan, Y.; Zhang, X.; Lei, Y.; Jiang, Y.; Zhouying, X.; Zhang, S.; Gao, J.; Zhao, S. Nitrogen Removal by Modified Zeolites Coated with Zn-Layered Double Hydroxides (Zn-ldhs) Prepared at Different Molar Ratios. J. Taiwan Inst. Chem. Eng. 2018, 87, 73–82. doi: 10.1016/j.jtice.2018.03.010
  • Zhang, X.; Xue, Y.; Gao, J.; Chunyan, H.; Yunseng, J.; Dou, Y. Comparison of Adsorption Mechanisms for Cadmium Removal by Modified Zeolites and Sands Coated with Zn-Layered Double Hydroxides. Chem. Eng. J. 2020, 380, 122578. doi: 10.1016/j.cej.2019.122578
  • Dang, V. M.; Van, H. T.; Vinh, N. D.; Duong, H.; Minh, T.; Nguyen, H.; Bich, T.; Nguyen, T. T.; Tran, H.; Ngoc, T., et al. Enhancement of Exchangeable Cd and Pb Immobilization in Contaminated Soil Using Mg/Al LDH-Zeolite as an Effective Adsorbent. RSC Adv. 2021, 11, 17007–17019. doi: 10.1039/D0RA10530A
  • Olfs, H. W.; Torres-Dorante, L. O.; Eckelt, R.; Kosslick, H. Comparison of Different Synthesis Routes for Mg-Al Layered Double Hydroxides (LDH): Characterization of the Structural Phases and Anion Exchange Properties. Appl. Clay Sci. 2009, 43, 459–464. doi: 10.1016/j.clay.2008.10.009
  • Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1–39.
  • Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means of Natural Zeolites. Water Res. 1984, 18, 1501–1507.
  • Roginsky, S.; Zeldovich, Y. B. The Catalytic Oxidation of Carbon Monoxide on Manganese Dioxide. Acta Phys. Chem. USSR 1934, 1, 2019.
  • Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–60. doi: 10.1061/JSEDAI.0000430
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. doi: 10.1021/ja02242a004
  • Freundlich, H. Kapillarchemie, Eine Darstellung Der Chemie Der Kolloide Und Verwandter Gebiete. 1922, 8, 591–5612.
  • Temkin, M. I. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physiochim. URSS 1940, 12, 327–356.
  • Yang, L.; Dadwhal, M.; Shahrivari, Z.; Ostwal, M.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T. Adsorption of Arsenic on Layered Double Hydroxides: Effect of the Particle Size. Ind. Eng. Chem. Res. 2006, 45, 4742–4751. doi: 10.1021/ie051457q
  • Shan, R. R.; Yan, L. G.; Yang, K.; Hao, Y. F.; Bin, D. Adsorption of Cd(II) by Mg–Al–CO3- and Magnetic Fe3O4/Mg–Al–CO3-Layered Double Hydroxides: Kinetic, Isothermal, Thermodynamic and Mechanistic Studies. J. Hazard. Mater. 2015, 299, 42–49. doi: 10.1016/j.jhazmat.2015.06.003
  • Korkuna, O.; Leboda, R.; Skubiszewska-Ziȩba, J.; Vrublevs’ka, T.; Gun’ko, V. M.; Ryczkowski, J. Structural and Physicochemical Properties of Natural Zeolites: Clinoptilolite and Mordenite. Microporous Mesoporous Mater. 2006, 87, 243–254. doi: 10.1016/j.micromeso.2005.08.002
  • Kowalczyk, P.; Sprynskyy, M.; Terzyk, A. P.; Lebedynets, M.; Namieśnik, J.; Buszewski, B. Porous Structure of Natural and Modified Clinoptilolites. J. Colloid Interface Sci. 2006, 297, 77–85. doi: 10.1016/j.jcis.2005.10.045
  • Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the Bet Equation Applicable to Microporous Adsorbents? 2007, 160, 49–56.
  • Palmer, C. D.; Puls, R. W. EPA Ground Water Issue Natural Attenuation of Hexavalent Chromium in Groundwater and Soils; Technology Innovation Office, Office of Solid Waste and Emergency Response, US EPA: Washington, DC, USA, 1994.
  • Yue, X.; Liu, W.; Chen, Z.; Lin, Z. Simultaneous Removal of Cu(II) and Cr(VI) by Mg–Al–Cl Layered Double Hydroxide and Mechanism Insight. J. Environ. Sci. 2017, 53, 16–26. doi: 10.1016/j.jes.2016.01.015
  • Wang, W.; Zhou, J.; Achari, G.; Jiaguo, Y.; Cai, W. Cr(VI) Removal from Aqueous Solutions by Hydrothermal Synthetic Layered Double Hydroxides: Adsorption Performance, Coexisting Anions and Regeneration Studies. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 457, 33–40.
  • Qili, H.; Pang, S.; Wang, D. In-Depth Insights into Mathematical Characteristics, Selection Criteria and Common Mistakes of Adsorption Kinetic Models: A Critical Review. Sep. Purif. Rev. 2021, 00, 1–19.
  • Feng-Chin, W.; Tseng, R.-L.; Juang, R.-S. Initial Behavior of Intraparticle Diffusion Model Used in the Description of Adsorption Kinetics. Chem. Eng. J. 2009, 153, 1–8. doi: 10.1016/j.cej.2009.04.042
  • McKay, G. Two-Resistance Mass Transfer Models for the Adsorption of Dyestuffs from Aqueous Solutions Using Activated Carbon. J. Chem. Technol. Biotechnol. Chem. Technol. 1984, 34 A, 294–310.
  • Al-Qodah, Z.; Shawaqfeh, A. T.; Lafi, W. K. Two-Resistance Mass Transfer Model for the Adsorption of the Pesticide Deltamethrin Using Acid Treated Oil Shale Ash. Adsorption 2007, 13, 73–82. doi: 10.1007/s10450-007-9004-x
  • Wang, J.; Sun, P.; Xue, H.; Chen, J.; Zhang, H.; Zhu, W. Red Mud Derived Facile Hydrothermal Synthesis of Hierarchical Porous α-Fe2O3 Microspheres as Efficient Adsorbents for Removal of Congo Red. J. Phys. Chem. Solids2020, 140, 109379. doi: 10.1016/j.jpcs.2020.109379
  • Kocaoba, S.; Orhan, Y.; Akyüz, T. Kinetics and Equilibrium Studies of Heavy Metal Ions Removalby Use of Natural Zeolite. Desalination 2007, 214, 1–10. doi: 10.1016/j.desal.2006.09.023
  • Abdelrahman, E. A.; Hegazey, R. M.; Alharbi, A. Facile Synthesis of Mordenite Nanoparticles for Efficient Removal of Pb (II) Ions from Aqueous Media. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1369–1383. doi: 10.1007/s10904-019-01238-5
  • Nnadozie, E. C.; Ajibade, P. A. A. Kinetic and Mechanistic Studies of Pb(II) and Cr(VI) Ions Using APTES Functionalized Magnetic Biochar. Microporous Mesoporous Mater. 2020, 309, 110573. doi: 10.1016/j.micromeso.2020.110573
  • Lima, E. C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J. C.; Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425–434. doi: 10.1016/j.molliq.2018.10.048
  • Saha, P.; Chowdhury, S. Insight into Adsorption Thermodynamics. Thermodynamics. 2011, 16, 349–364.
  • Anastopoulos, I.; Bhatnagar, A.; Lima, E. C. Adsorption of Rare Earth Metals: A Review of Recent Literature. J. Mol. Liq. 2016, 221, 954–962. doi: 10.1016/j.molliq.2016.06.076
  • Tran, H. N.; You, S.-J.; Chao, H.-P. Thermodynamic Parameters of Cadmium Adsorption onto Orange Peel Calculated from Various Methods: A Comparison Study. J. Environ. Chem. Eng. 2016, 4, 2671–2682. doi: 10.1016/j.jece.2016.05.009
  • Shamsudin, M. S.; Azha, S. F.; Sellaoui, L.; Badawi, M.; Alghamdi, Y.; Bonilla-Petriciolet, A.; Ismail, S. Fabrication and Characterization of a Thin Coated Adsorbent for Antibiotic and Analgesic Adsorption: Experimental Investigation and Statistical Physical Modelling. Chem. Eng. J. 2020, 401.
  • Sellaoui, L.; Guedidi, H.; Knani, S.; Reinert, L.; Duclaux, L.; Abdelmottaleb, B. L. Application of Statistical Physics Formalism to the Modeling of Adsorption Isotherms of Ibuprofen on Activated Carbon. Fluid Phase Equilib. 2015, 387, 103–110. doi: 10.1016/j.fluid.2014.12.018
  • Touihri, M.; Guesmi, F.; Hannachi, C.; Hamrouni, B.; Sellaoui, L.; Badawi, M.; Poch, J.; Fiol, N. Single and Simultaneous Adsorption of Cr(VI) and Cu(II) on a Novel Fe3O4/Pine Cones Gel Beads Nanocomposite: Experiments, Characterization and Isotherms Modeling. Chem. Eng. J. 2021, 34(3), 416.
  • Yuan, G.; Seyama, H.; Soma, M.; Theng, B. K. G.; Tanaka, A. Adsorption of Some Heavy Metals by Natural Zeolites: XPS and Batch Studies. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 1999, 34, 625–648.
  • Le Phuong, H.; Van, H. T.; Lan Huong, N.; Mac, D.-H.; Vu, T. T.; Ha, L. T.; Nguyen, X. C. Removal of Cr(VI) from Aqueous Solution Using Magnetic Modified Biochar Derived from Raw Corncob. New J. Chem. 2019, 43, 18663–18672. doi: 10.1039/C9NJ02661D
  • Shi, S.; Yang, J.; Liang, S.; Mingyang, L.; Gan, Q.; Xiao, K.; Jingping, H. Enhanced Cr(VI) Removal from Acidic Solutions Using Biochar Modified by Fe(3)O(4)@SiO(2)-NH(2) Particles. Sci. Total Environ. 2018, 628, 499–508.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.