141
Views
0
CrossRef citations to date
0
Altmetric
Flotation

Combined effect of operating variables on performance and kinetic of lead flotation

, , , &
Pages 75-85 | Received 30 Mar 2022, Accepted 08 Jul 2022, Published online: 12 Jul 2022

References

  • Feng, B.; Zhang, W.; Guo, Y.; Wang, T.; Luo, G.; Wang, H.; He, G. The Flotation Separation of Galena and Pyrite Using Serpentine as Depressant. Powder Tech 2019, 342, 486–490.
  • Grano, S.; Ralston, J.; Smart, R. S. C. Influence of Electrochemical Environment on the Flotation Behaviour of Mt. Isa Copper and lead–zinc Ore. Int. J. of Min. Proc. 1990, 30(1), 69–97. DOI: 10.1016/0301-7516(90)90067-9.
  • Nakhaei, F.; Irannajad, M. Effective Parameters on Gas Dispersion Variables in Flotation Columns. Iran. J. Min. Eng 2015, 10(28), 27–33.
  • Nakhaei, F.; Irannajad, M. The Use of Seawater in Copper and Molybdenum Flotation. J. Iran. J. Mar. Technol 2015, 2(1), 103–111.
  • Han, Y.; Han, S.; Kim, B.; Yang, J.; Choi, J.; Kim, K.; You, K. S.; Kim, H. Flotation Separation of Quartz from Apatite and Surface Forces in bubble–particle Interactions: Role of pH and Cationic Amine Collector Contents. J. of Ind. and Eng. Chem. 2019, 70, 107–115. DOI: 10.1016/j.jiec.2018.09.036.
  • Gomez-Flores, A.; Solongo, S. K.; Heyes, G. W.; Ilyas, S.; Kim, H. Bubble – Particle Interactions with Hydrodynamics, XDLVO Theory, and Surface Roughness for Flotation in an Agitated Tank Using CFD Simulations. Min. Eng. 2020, 152, 106368. DOI: 10.1016/j.mineng.2020.106368.
  • Zhu, Z.; Wang, D.; Yang, B.; Yin, W.; Ardakani, M. S.; Yao, J.; Drelich, J. W. Effect of nano-sized Roughness on the Flotation of Magnesite Particles and particle-bubble Interactions, Min. Eng. 2020, 151, 106340.
  • Bragin, V. I.; Burdakova, E. A.; Usmanova, N. F.; Kinyakin, A. I. Comprehensive Assessment of Flotation Reagents by Their Influence on Metal Losses and Flotation Selectivity. Russ. J. Non-ferrous Metals. 2021, 62, 629–636. DOI: 10.3103/S1067821221060055.
  • Gomez-Flores, A.; Bradford, S. A.; Hwang, G.; Heyes, G. W.; Kim, H. Particle–bubble Interaction Energies for Particles with Physical and Chemical Heterogeneities. Min. Eng. 2020, 155, 106472. DOI: 10.1016/j.mineng.2020.106472.
  • Yoon, R. H.; Mao, L. Application of Extended DLVO Theory, IV: Derivation of Flotation Rate Equation from First Principles. J. of Coll. and Interface Sci 1996, 181(2), 613–626. DOI: 10.1006/jcis.1996.0419.
  • Nakhaei, F.; Irannajad, M. Reagents Types in Flotation of Iron Oxide Minerals: A Review. Min. Proc. and Ext. Met. Review. 2018, 39(2), 89–124. DOI: 10.1080/08827508.2017.1391245.
  • Ran, J.; Qiu, X.; Hu, Z.; Liu, Q.; Song, B.; Yao, Y. Effects of Particle Size on Flotation Performance in the Separation of Copper, Gold and Lead. Powder Tech. 2019, 344, 654–664.
  • Jameson, G. J. The Effect of Surface Liberation and Particle Size on Flotation Rate Constants. Min. Eng. 2012, 36–38, 132–137. DOI: 10.1016/j.mineng.2012.03.011.
  • Cheng, G.; Ma, L. Q.; Gui, X. H.; Liu, J. T.; Wang, Y. T. Study on Kinetic Modelling for Fine Coal Flotation. Int. J. of Coal Prep. and Uti. 2013, 33(1), 12–25. DOI: 10.1080/19392699.2012.728543.
  • Kim, S.; Baek, S. H.; Han, Y.; Jeon, H. S. Laboratory Testing of Scheelite Flotation from Raw Ore in Sangdong Mine for Process Development. Minerals. 2020, 10(11), 971. DOI: 10.3390/min10110971.
  • Foroutan, A.; Abbas Zadeh Haji Abadi, M.; Kianinia, Y.; Ghadiri, M. Critical Importance of pH and Collector Type on the Flotation of Sphalerite and Galena from a low-grade lead–zinc Ore. Sci. Rep 2021, 11(1), 3103. DOI: 10.1038/s41598-021-82759-3.
  • Bulatovic, S. M. Handbook of Flotation Reagents Chemistry, Theory and Practice: Flotation of Sulfide Ores, 1st ed.; Elsevier Science & Technology: Amsterdam, 2007.
  • Sharma, K. K.; Kalyani, V. K.; Gouri Charan, T.; Sinha, A. Application of a Central Composite Design with Response Surface Methodology in Beneficiation Studies of Coal Fines Using an oleo-flotation Process. Int. J. of Coal Prep. and Util. 2012, 32(5), 225–237. DOI: 10.1080/19392699.2012.695414.
  • Cheng, G.; Zhang, M.; Cao, Y.; Lu, Y.; Feng, Y.; Zhao, S. Preparation and Evaluation of Lignite Flotation Collector Derived from Waste hot-pot Oil. Fuel. 2020, 267, 117138. DOI: 10.1016/j.fuel.2020.117138.
  • Laskowski, J. S.; Tlhone, T.; Williams, P.; Ding, K. Fundamental Properties of the Polyoxypropylene Alkyl Ether Flotation Frothers. Int. J. of Min. Proc. 2003, 72(1–4), 289–299. DOI: 10.1016/S0301-7516(03)00105-4.
  • Guy, H. H.; Jia, R. An Improved Class of Flotation Frothers. Int. J. of Min. Proc. 2000, 58(1–4), 35–43. DOI: 10.1016/S0301-7516(99)00070-8.
  • Asghari, M.; Nakhaei, F.; VandGhorbany, O. Copper Recovery Improvement in an Industrial Flotation Circuit: A Case Study of Sarcheshmeh Copper Mine. Energy Sources, Part A: Rec., Util., and Env. Effects. 2018, 41(6), 761–778. DOI: 10.1080/15567036.2018.1520356.
  • Sharma, K. K.; Kalyani, V. K.; Gouri Charan, T.; Sinha, A. Application of a Central Composite Design with Response Surface Methodology in Beneficiation Studies of Coal Fines Using an oleo-flotation Process. Int. J. of Coal Prep. and Util. 2012, 32(5), 225–237.
  • Ghosh, C.; Sinhamahapatra, S.; Tripathi, H. S.; Sarkar, U. Reverse Flotation of Natural Magnesite and Process Optimization Using Response Surface Methodology. Tran. of the Indian Ceramic Soc. 2020, 79(1), 23–29. DOI: 10.1080/0371750X.2019.1699864.
  • Moharrami, M.; Abdollahzadeh, A. A. Feasibility Study of Differential Flotation of Cu–Pb–Zn Minerals from Copper sulfide–oxide Ores. Trans. Indian Inst. Met. 2020, 73(10), 2645–2655. DOI: 10.1007/s12666-020-02069-6.
  • HajizadehOmran, A.; Nakhaei, F. Optimization of Parameters in Column Flotation in Desulfurization of Iron Ore Concentrate, XXIX International Mineral Processing Congress (IMPC 2018), 17-21 Sept. 2018, Moscow, Russia
  • Aslan, N.; Fidan, R. Optimization of Pb Flotation Using Statistical Technique and Quadratic Programming. Sep. and Pur. Tech. 2008, 62(1), 160–165. DOI: 10.1016/j.seppur.2008.01.016.
  • Ilyas, S.; Bhatti, H. N.; Bhatti, I. A.; Sheikh, M. A.; Ghauri, M. A. Bioleaching of Metal Ions from Low Grade Sulphide Ore: Process Optimization by Using Orthogonal Experimental Array Design. African J. of Biotech. 2010, 9(19), 2801–2810.
  • Vazifeh, Y.; Jorjani, E.; Bagherian, A. Optimization of Reagent Dosages for Copper Flotation Using Statistical Technique. Trans. of Nonferrous Metals Soc. of China. 2010, 20(12), 2371–2378. DOI: 10.1016/S1003-6326(10)60657-7.
  • Rath, S. S.; Sahoo, H.; Das, B. Optimization of Flotation Variables for the Recovery of Hematite Particles from BHQ Ore. Int. J. of Min., Metall. and Mater. 2013, 20(7), 605–611. DOI: 10.1007/s12613-013-0773-9.
  • Asadi, M.; Soltani, F.; Tavakoli Mohammadi, M. R.; Khodadadi Darban, A.; Abdollahy, M. A Successful Operational Initiative in Copper Oxide Flotation: Sequential sulphidisation-flotation Technique. Physic. Prob. of Min. Proc. 2019, 55(2), 356–369.
  • Nakhaei, F.; Irannajad, M.; Sam, A.; Jamalzadeh, A. Application of D-optimal Design for Optimizing copper-molybdenum Sulphides Flotation. Physic. Prob. of Min. Proc. 2016, 52(1), 252–267.
  • Nakhaei, F.; Iranajad, M.; Mohammadnejad, S. Evaluation of Column Flotation Froth Behavior by Image Analysis: Effects of Operational Factors in Desulfurization of Iron Ore Concentrate. Energy Sources, Part A: Rec., Util., and Env. Effects. 2018, 40(19), 2286–2306. DOI: 10.1080/15567036.2018.1486485.
  • Ghodrati, S.; Nakhaei, F.; VandGhorbany, O.; Hekmati, M. Modeling and Optimization of Chemical Reagents to Improve Copper Flotation Performance Using Response Surface Methodology. Energy Sources, Part A: Rec., Util., and Env. Effects. 2020, 42(13), 1633–1648. DOI: 10.1080/15567036.2019.1604874.
  • Martinez, A. L.; Uribe, A. S.; Carrillo, F. R. P.; Coreno, J. A.; Ortiz, J. C. Study of Celestite Flotation Efficiency Using Sodium Dodecyl Sulfonate Collector: Factorial Experiment and Statistical Analysis of Data. Int. J. Mineral Process 2003, 70(1–4), 83–97. DOI: 10.1016/S0301-7516(02)00152-7.
  • Nandiwale, K. Y.; Bokade, V. V. Optimization by Box–Behnken Experimental Design for Synthesis of n-hexyl Levulinate Bio Lubricant over Hierarchical H-ZSM-5: An Effort Towards Agricultural Waste Minimization. Proc. Safety and Env. Prot. 2016, 99, 159–166. DOI: 10.1016/j.psep.2015.11.003.
  • Montgomery, D. C. Design and Analysis of Experiments; John Wiley & Sons: Singapore, 1991.
  • Jensen, D. Efficiency Comparisons of Central Composite Designs. J. of Stat. Comp. and Sim. 1995, 52(2), 177–183. DOI: 10.1080/00949659508811664.
  • Xie, H.; Sun, R.; Wu, J.; Feng, D.; Gao, L. A Case Study of Enhanced Sulfidization Flotation of Lead Oxide Ore: Influence of Depressants. Minerals. 2020, 10(2), 95. DOI: 10.3390/min10020095.
  • Li, C. X.; Wei, C.; Deng, Z. G.; Li, X. B.; Li, M. T.; Xu, H. S. Hydrothermal Sulfidation and Flotation of Oxidized zinc-lead Ore. Metall. Mater. Trans. B. 2014, 43(3), 833–838. DOI: 10.1007/s11663-013-9887-8.
  • Bahrami, A.; Kazemi, F.; Ghorbani, Y. Effect of Different Reagent Regime on the Kinetic Model and Recovery in Gilsonite Flotation. J. of Mat. Res. and Tech. 2019, 8(5), 4498–4509. DOI: 10.1016/j.jmrt.2019.07.063.
  • Aydın, B.; Gül, A. Kinetic Modelling and Optimization of Flotation Process of Electrum. Physico. Prob. of Min. Proc. 2021, 57(6), 80–94.
  • Gharai, M.; Venugopal, R. Modeling of Flotation Process—An Overview of Different Approaches. Min. Proc. and Ext. Met. Review. 2016, 37(2), 120–133.
  • Chipakwe, V.; Sand, A.; Chehreh Chelgani, S. Nanobubble Assisted Flotation Separation of Complex Pb–Cu–Zn Sulfide Ore – Assessment of Process Readiness. Sep. Sci. and Tech. 2022, 57(8), 1351–1358. DOI: 10.1080/01496395.2021.1981942.
  • McFadzean, B.; Castelyn, D. G.; O’Connor, C. T. The Effect of Mixed Thiol Collectors on the Flotation of Galena. Min. Eng 2012, 36–38, 211–218. DOI: 10.1016/j.mineng.2012.03.027.
  • Fuerstenau, M. C.; Miller, J. D.; Kuhn, M. C. Chemistry of Flotation; SME/AIME: New York, USA, 1984.
  • Park, K.; Park, S.; Choi, J.; Kim, G.; Tong, M.; Kim, H. Influence of Excess Sulfide Ions on the malachite-bubble Interaction in the Presence of thiol-collector. Sep. and Puri. Tech. 2016, 168, 1–7. DOI: 10.1016/j.seppur.2016.04.053.
  • Fuerstenau, M. C.; Olivas, S. A.; Herrera-Urbina, R.; Han, K. H. The Surface Characteristics and Flotation Behavior of Anglesite and Cerussite. Int. J. of Min. Proc. 1987, 20(1–2), 73–85. DOI: 10.1016/0301-7516(87)90018-4.
  • Herrera-Urbina, R.; Sotillo, F. J.; Fuerstenau, D. W. Amyl Xanthate Uptake by Natural and Sulfide treated Cerussite and Galena. Int. J. of Min. Proc. 1998, 55(2), 113–128. DOI: 10.1016/S0301-7516(98)00028-3.
  • Du, Y.; Tong, X.; Xie, X.; Lu, Y.; Hua, Z.; Zhang, W. Effects of Pyrite on the Flotation Behavior and Electrochemical Interaction of Different Particle Sizes of Galena in the Presence of Diethyldithiocarbamate. Sep. Sci.and Tech. 2021, 56(14), 2467–2474. DOI: 10.1080/01496395.2020.1833217.
  • Hassanzadeh, A.; Firouzi, M.; Albijanic, B.; Celik, M. S. A Review on Determination of particle–Bubble Encounter Using Analytical, Experimental and Numerical Methods. Min. Eng. 2018, 122(15), 296–311. DOI: 10.1016/j.mineng.2018.04.014.
  • Taghavi, F.; Noaparast, M.; Pourkarimi, Z.; Nakhaei, F. Comparison of Mechanical and Column Flotation Performances on Recovery of Phosphate Slimes in Presence of nano-microbubbles. J. Cent. South Univ 2022, 29(1), 102 115. DOI: 10.1007/s11771-022-4925-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.