93
Views
1
CrossRef citations to date
0
Altmetric
Adsorption

Decolorization of xylose mother liquor with polydivinylbenzene/aminated polyglycidyl methacrylate interpenetrating polymer networks

, &
Pages 29-43 | Received 25 Feb 2022, Accepted 12 Jul 2022, Published online: 19 Jul 2022

References

  • Ding, S. Y.; Yang, J. The Effects of Sugar Alcohols on Rheological Properties, Functionalities, and Texture in Baked Products – A Review. Trends Food Sci. Tech 2021, 111, 670–679. DOI: 10.1016/j.tifs.2021.03.009.
  • Park, Y. C.; Oh, E. J.; Jo, J. H.; Jin, Y. S.; Seo, J. H. Recent Advances in Biological Production of Sugar-alcohols. Curr. Opin. Biotech 2016, 37, 105–113. DOI: 10.1016/j.copbio.2015.11.006.
  • Zhang, W. L.; Zhang, T.; Jiang, B.; Mu, W. M. Enzymatic Approaches to Rare Sugar Production. Biotechnol. Adv 2007, 35, 267–274. DOI: 10.1016/j.biotechadv.2017.01.004.
  • Sadier, A.; Shi, D.; Mamede, A. S.; Paul, S.; Marceau, E.; Wojcieszak, R. Selective aqueous-phase Hydrogenation of Xylose to Xylitol over SiO2-supported Ni and Ni-Fe Catalysts: Benefits of Promotion by Fe. Appl. Catal. B-Environ. 2021, 298, 120564. DOI: 10.1016/j.apcatb.2021.120564.
  • Chen, X. M.; Liang, N. J.; Kitts, D. D. Chemical Properties and Reactive Oxygen and Nitrogen Species Quenching Activities of Dry sugar-amino Acid Maillard Reaction Mixtures Expose to Baking Temperatures. Food Res. Int 2015, 76, 618–625. DOI: 10.1016/j.foodres.2015.06.033.
  • Santibáñez, L.; Henríquez, C.; Corro-Tejeda, R.; Bernal, S.; Armijo, B.; Salazar, O. Xylooligosaccharides from Lignocellulosic Biomass: A Comprehensive Review. Carbohyd. Polym 2021, 251, 117118. DOI: 10.1016/j.carbpol.2020.117118.
  • Baptista, S. L.; Carvalho, L. C.; Romaní, A.; Domingues, L. Development of a Sustainable Bioprocess Based on Green Technologies for Xylitol Production from Corn Cob. Ind. Crop. Prod 2020, 156, 112867. DOI: 10.1016/j.indcrop.2020.112867.
  • Hua, Y.; Wang, J. C.; Zhu, Y. L.; Zhang, B.; Kong, X.; Wang, D. M.; Hong, J. Release of Glucose Repression on Xylose Utilization in Kluyveromyces marxianus to Enhance Glucose-xylose Co-utilization and Xylitol Production from Corncob Hydrolysate. Microb. Cell Fact. 2019, 18, 24. DOI: 10.1186/s12934-019-1068-2.
  • Wang, H. W.; Li, L. J.; Zhang, L. B.; An, J.; Cheng, H. R.; Deng, Z. X. Xylitol Production from Waste Xylose Mother Liquor Containing Miscellaneous Sugars and Inhibitors: One-pot Biotransformation by Candida tropicalis and Recombinant Bacillus subtilis. Microb. Cell Fact. 2016, 15, 1–12. DOI: 10.1186/s12934-016-0480-0.
  • Aljohani, H.; Ahmed, Y.; EL-Shafey, O.; EL-Shafey, S.; Fouad, R.; Shoueir, K. Decolorization of Turbid Sugar Juice from Sugar Factory Using Waste Powdered Carbon. Appl. Water Sci 2018, 8, 1–11. DOI: 10.1007/s13201-018-0681-2.
  • Bernal, M.; Ruiz, M. O.; Geanta, R. M.; Benito, J. M.; Escudero, I. Colour Removal from Beet Molasses by Ultrafiltration with Activated Charcoal. Chem. Eng. J 2016, 283, 313–322. DOI: 10.1016/j.cej.2015.07.047.
  • Guo, S. W.; Luo, J. Q.; Wu, Y. Y.; Qi, B. K.; Chen, X. R.; Wan, Y. H. Decoloration of Sugarcane Molasses by Tight Ultrafiltration: Filtration Behavior and Fouling Control. Sep. Purif. Technol 2018, 204, 66–74. DOI: 10.1016/j.seppur.2018.04.067.
  • Lee, S. C.; Kim, E. H. Affinity Characteristics of Neutral and Anion Exchange Polymer Resin Adsorbents for Main Components in a Simulated Biomass Hydrolysate. J. Ind. Eng. Chem 2020, 91, 223–230. DOI: 10.1016/j.jiec.2020.08.003.
  • Shi, Y. Y.; Liu, T. T.; Han, Y.; Zhu, X. F.; Zhao, X. J.; Ma, X. J.; Jiang, D. Y.; Zhang, Q. H. An Efficient Method for Decoloration of Polysaccharides from the Sprouts of Toona Sinensis (A. Juss.) Roem by Anion Exchange Macroporous Resins. Food Chem 2017, 217, 461–468. DOI: 10.1016/j.foodchem.2016.08.079.
  • Coca, M.; García, M. T.; Mato, S.; Cartón, Á.; González, G. Evolution of Colorants in Sugar Beet Juices during Decolorization Using Styrenic Resins. J. Food Eng 2008, 89, 429–434. DOI: 10.1016/j.jfoodeng.2008.05.025.
  • Huang, Q. L.; Zhang, H. R.; Xiong, L.; Huang, C.; Guo, H. J.; Chen, X. F.; Luo, M. T.; Tian, L. L.; Lin, X. Q.; Chen, X. D. Controllable Synthesis of Monoacrylate-modified Adsorption Resins and Enhancing Adsorption toward Fermentation Inhibitors from Rice Straw Hydrolysate. J. Chem. Technol. Biot. 2018, 93, 2652–2658. DOI: 10.1002/jctb.5619.
  • Huang, Q. L.; Zhang, H. R.; Xiong, L.; Huang, C.; Guo, H. J.; Chen, X. F.; Luo, M. T.; Tian, L. L.; Lin, X. Q.; Chen, X. D. Controllable Synthesis of Styrene-divinylbenzene Adsorption Resins and the Effect of Textural Properties on Removal Performance of Fermentation Inhibitors from Rice Straw Hydrolysate. Ind. Eng. Chem. Res 2018, 57, 5119–5127. DOI: 10.1021/acs.iecr.8b00545.
  • Chen, X. F.; Zhang, L. Q.; Xu, W. P.; Wang, C.; Li, H. L.; Xiong, L.; Zhang, H. R.; Chen, X. D. Synthesis of Polyacrylamide/polystyrene Interpenetrating Polymer Networks and the Effect of Textural Properties on Adsorption Performance of Fermentation Inhibitors from Sugarcane Bagasse Hydrolysate. Bioresour. Technol 2010, 318, 124053. DOI: 10.1016/j.biortech.2020.124053.
  • Eben, M.; Cithuraj, L.; Justus, S.; Bhagavathsingh, J. Synthesis and Characterization of Stretchable IPN Polymers from Biodegradable Resins Incorporated with Styrene and Methyl Methacrylate Monomers for Enhanced Mechanical Strength. Eur. Polym. J 2020, 138, 109957. DOI: 10.1016/j.eurpolymj.2020.109957.
  • Shao, L. S.; Huang, J. H. Controllable Synthesis of N-vinylimidazole-modified hyper-cross-linked Resins and Their Efficient Adsorption of p-nitrophenol and o-nitrophenol. J. Colloid Interfaces Sci 2017, 507, 42–50. DOI: 10.1016/j.jcis.2017.07.112.
  • Zhang, L. Q.; Wang, C.; Zhang, H. R.; Guo, H. J.; Xiong, L.; Li, H. L.; Chen, X. F.; Chen, X. D. Synthesis of Glycidyl Methacrylate Modified Hyper-cross-linked Resins and Enhancing Their Adsorptions toward Levulinic Acid and Furfural from Sugarcane Bagasse Hydrolysate. J. Chem. Technol. Biot. 2020, 95, 2537–2548. DOI: 10.1002/jctb.6440.
  • Ren, Y. F.; Han, Y. H.; Lei, X. F.; Lu, C.; Liu, J.; Zhang, G. X.; Zhang, B. L.; Zhang, Q. Y. A Magnetic Ion Exchange Resin with High Efficiency of Removing Cr (VI). Colloid. Surface A 2020, 604, 25279. DOI: 10.1016/j.colsurfa.2020.125279.
  • Wang, M. Q.; Zhou, Q.; Zhang, M. C.; Shuang, C. D.; Zhou, Y.; Li, A. M. Preparation of a Novel Magnetic Resin for Effective Removal of Both Natural Organic Matter and Organic Micropollutants. Chinese Chem. Lett. 2013, 24, 601–604. DOI: 10.1016/j.cclet.2013.04.021.
  • Ghosh, T.; Karak, N. Interpenetrating Polymer Network/functionalized-reduced Graphene Oxide Nanocomposite: As an Advanced Functional Material. J. Appl. Polym. Sci 2021, 138, 50499. DOI: 10.1002/app.50499.
  • James, J.; Thomas, G. V.; Douxel, D.; Strankowski, M.; Kalarikkal, N.; Thomas, S. Fabrication of Toughened Plastic Using Styrene Butadiene Rubber-poly (Methyl Methacrylate) Interpenetrating Polymer Networks. Mater. Today Chem 2021, 19, 100383. DOI: 10.1016/j.mtchem.2020.100383.
  • Wu, J.; Li, Q. M.; Li, W. T.; Li, Y.; Wang, G. X.; Li, A. M.; Li, H. B. Efficient Removal of Acid Dyes Using Permanent Magnetic Resin and Its Preliminary Investigation for Advanced Treatment of Dyeing Effluents. J. Clean. Prod 2020, 251, 119694. DOI: 10.1016/j.jclepro.2019.119694.
  • Fu, Z. Y.; He, C. L.; Li, H. B.; Yan, C.; Chen, L. M.; Huang, J. H.; Liu, Y. N. A Novel Hydrophilic–hydrophobic Magnetic Interpenetrating Polymer Networks (Ipns) and Its Adsorption Towards Salicylic Acid from Aqueous Solution. Chem. Eng. J 2015, 279, 250–257. DOI: 10.1016/j.cej.2015.04.146.
  • Huang, J. H.; Li, Y. Hydrophobic-hydrophilic Interpenetrating Polymer Networks (Ipns) Composed of Hydrophobic Polystyrene (PST) and Hydrophilic Polyacryldiethyle – Netriamine (PADETA) Networks and Their High Efficient Adsorption to Salicylic Acid. Fluid Phase Equilibr 2016, 427, 384–389. DOI: 10.1016/j.fluid.2016.08.005.
  • Xiao, G. Q.; Wen, R. M.; Wei, D. M. Effects of the Hydrophobicity of Adsorbate on the Adsorption of Salicylic Acid and 5-sulfosalicylic Acid onto the Hydrophobic-hydrophilic Macroporous Polydivinylbenzene/polymethylacrylethylenediamine IPN. Fluid Phase Equilibr 2016, 421, 33–38. DOI: 10.1016/j.fluid.2016.03.022.
  • Wang, J. D.; Li, W. Z.; Du, Z. J.; Ma, Q. Z. Study of Lignin Catalytic Depolymerization by Solid Superacid Ni-S2O82-/TiO2. Acta Energiae Solaris Sinica. 2017, 38, 867–873. DOI: 10.3969/j.1004-8405.2008.03.002.
  • Cao, S. L.; Ma, X. J.; Li, L.; Huang, L. L.; Chen, L. H. Lignin Removal Law during Bamboo Prehydrolysis with Oxalic Acid. Trans. CSAE. 2014, 30, 277–284. DOI: 10.3969/j.1002-6819.2014.05.035.
  • Yao, F.; Huang, Z.; Li, D.; Wang, H.; Xu, X.; Jiang, Y.; Qu, H. Phenolic Components, Antioxidant Enzyme Activities and Anatomic Structure of Longan Fruit Pericarp following Treatment with Adenylate Triphosphate. Sci. Hortic 2014, 180, 6–13. DOI: 10.1016/j.scienta.2014.10.008.
  • Cao, R.; Guo, J.; Hua, X.; Xu, Y. Investigation on Decolorization Kinetics and Thermodynamics of Lignocellulosic Xylooligosaccharides by Highly Selective Adsorption with Amberlite XAD‒16N. Food Chem 2020, 310, 125934. DOI: 10.1016/j.foodchem.2019.125934.
  • Tang, R.; Zhou, Y.; Chen, Z.; Wang, L.; Lai, Y.; Chang, S. K.; Wang, Y.; Qu, H.; Jiang, Y.; Huang, H. Regulation of Browning and Senescence of Litchi Fruit Mediated by Phenolics and Energy Status: A Postharvest Comparison on Three Different Cultivars. Postharvest Biol. Tec 2020, 168, 111280. DOI: 10.1016/j.postharvbio.2020.111280.
  • Sun, Y. Adsorption of Phenolic Compounds onto the Hydrogen Bonding Polymeric Adsorbents and Their Application in the Removal of Phenols and Decolorization in the Xylose Production; Docorate Dissertation of Nanjing University: Nanjing, 2005.
  • Mao, J. Synthesis of Hypercrosslinked Polystyrene Resin and Its Application in Decolorization of Fruit Juices. Master Dissertation of Hunan Normal University, Changsha, 2014.
  • Duan, S.; Bao, Z.; Wen, G.; Chen, L.; Yang, Y. Decoloration of Raffinose Extract Solutions via Macroporous Resin Adsorption. J. Chem. Eng. Chinese U. 2016, 30, 299–304. DOI: 10.3969/j.1003-9015.2016.02.007.
  • Mandal, A.; Majumder, A.; Banik, I.; Ghost, K.; Bar, N.; Das, S. K. Fixed-bed Column Study for Removal of Phenol by Neem Leaves-Experiment, MLR and ANN Analysis. Susain. Chem. Pharm. 2021, 23, 100514. DOI: 10.1016/j.scp.2021.100514.
  • Mandal, A.; Bar, N.; Das, S. K. Phenol Removal from Wastewater Using Low-cost Natural Bioadsorbent Neem (Azadirachta indica) Leaves: Adsorption Study and MLR Modeling. Susain. Chem. Pharm. 2020, 17, 100308. DOI: 10.1016/j.scp.2020.100308.
  • He, B. L.; Huang, W. Q. Ion Exchange and Adsorption Resin; Shanghai Science and Education Press: Shanghai, 1995.
  • Zhang, J. W.; Zhu, C. X.; Zhou, F.; Ma, L. Adsorption Behavior and Kinetics for L-valine Separation from Aqueous Solution Using Ion Exchange Resin. React. Funct. Polym 2018, 130, 51–60. DOI: 10.1016/j.reactfunctpolym.2018.05.010.
  • Mercado-Pacheco, J.; Julio-Altamiranda, Y.; Sánchez-Tuirán, E.; González-Delgado, D.; Ojeda, K. A. Variables Affecting Delignification of Corn Wastes Using Urea for Total Reducing Sugars Production. ACS Omega. 2020, 5, 12196–12201. DOI: 10.1021/acsomega.0c00645.
  • Liang, L.; Liu, G. M.; Yu, G. Y.; Song, Y.; Li, Q. H. Simultaneous Decoloration and Purification of Crude Oligosaccharides from Pumpkin (Cucurbita moschata Duch) by Macroporous Adsorbent Resin. Food Chem 2019, 277, 744–752. DOI: 10.1016/j.foodchem.2018.10.138.
  • Peter, E. L.; Nagendrappa, P. B.; Ajayi, C. O.; Sesaazi, C. D. Total Polyphenols and Antihyperglycemic Activity of Aqueous Fruits Extract of Abelmoschus esculentus: Modeling and Optimization of Extraction Conditions. PLoS One. 2021, 16, 1–16. DOI: 10.1371/journal.pone.0250405.
  • Wang, X. M.; Liang, X. L.; Huang, J. H.; Liu, Y. N. Hydrophobic-hydrophilic Polydivinylbenzene/polyacryldiethylenetriamine Interpenetrating Polymer Networks and Its Adsorption Performance toward Salicylic Acid from Aqueous Solutions. AIChE J 2014, 60, 2636–2643. DOI: 10.1002/aic.14429.
  • Zhang, M. Z.; Liu, B. J.; Gu, X. Y. Polymer Research Methods; China Light Industry Press: Beijing, 2000.
  • Zhang, J. W.; Qian, H. Thermal Behavior of Typical Weak Basic Ion Exchange Resin. J. Therm. Anal. Calorim 2014, 115, 875–880. DOI: 10.1007/s10973-013-3347-1.
  • Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem 2015, 87, 1051–1069. DOI: 10.1515/pac-2014-1117.
  • Janković, B.; Manić, N. Kinetic Analysis and Reaction Mechanism of p-alkoxybenzyl Alcohol ([4-(hydroxymethyl)phenoxymethyl]polystyrene) Resin Pyrolysis: Revealing New Information on Thermal Stability. Polym. Degrad. Stabil 2021, 189, 109606. DOI: 10.1016/j.polymdegradstab.2021.109606.
  • Watts, J. F.; Abel, M. L.; Perruchot, C.; Lowe, C.; Maxted, J. T.; White, R. G. Segregation and Crosslinking in Urea formaldehyde/epoxy Resins: A Study by high-resolution XPS. J. Electron Spectrosc. 2001, 121, 233–247. DOI: 10.1016/S0368-2048(01)00337-1.
  • Guo, J. K.; Fan, X. H.; Li, Y. P.; Yu, S. H.; Zhang, Y.; Wang, L.; Ren, X. H. Mechanism of Selective Gold Adsorption on ion-imprinted Chitosan Resin Modified by Thiourea. J. Hazard. Mater 2021, 415, 125617. DOI: 10.1016/j.jhazmat.2021.125617.
  • Fu, W.; Ji, G. Z.; Chen, H. H.; Yang, S. Y.; Guo, B.; Yang, H.; Huang, Z. Q. Molybdenum Sulphide Modified Chelating Resin for Toxic Metal Adsorption from Acid Mine Wastewater. Sep. Purif. Technol 2010, 251, 117407. DOI: 10.1016/j.seppur.2020.117407.
  • Zhang, L.; Wang, C.; Zhang, H.; Guo, H.; Xiong, L.; Li, H.; Chen, X.; Chen, X. Synthesis of Glycidyl Methacrylate Modified Hyper-cross-linked Resins and Enhancing Their Adsorptions toward Levulinic Acid and Furfural from Sugarcane Bagasse Hydrolysate. J. Chem. Technol. Biot. 2020, 95, 2537–2548. DOI: 10.1002/jctb.6440.
  • Chen, X.; Zhang, L.; Huang, C.; Xiong, L.; Li, H.; Wang, C.; Zhao, C.; Huang, Q.; Chen, X. Adsorption Study of Acid Soluble Lignin Removal from Sugarcane Bagasse Hydrolysate by a Self-Synthesized Resin for Lipid Production. Appl. Biochem. Biotech 2019, 188, 585–601. DOI: 10.1007/s12010-018-02939-2.
  • Liang, L.; Liu, G.; Yu, G.; Song, Y.; Li, Q. Simultaneous Decoloration and Purification of Crude Oligosaccharides from Pumpkin (Cucurbita moschata Duch) by Macroporous Adsorbent Resin. Food Chem 2019, 277, 744–752. DOI: 10.1016/j.foodchem.2018.10.138.
  • Shi, Y.; Liu, T.; Han, Y.; Zhu, X.; Zhao, X.; Ma, X.; Jiang, D.; Zhang, Q. An Efficient Method for Decoloration of Polysaccharides from the Sprouts of Toona Sinensis (A. Juss.) Roem by Anion Exchange Macroporous Resins. Food Chem 2017, 217, 461–468. DOI: 10.1016/j.foodchem.2016.08.079.
  • Singh, K.; Bharose, R.; Singh, V. K.; Verma, S. K. Sugar Decolorization through Selective Adsorption onto Functionalized Accurel Hydrophobic Polymeric Support. Ind. Eng. Chem. Res 2011, 50, 10074–10082. DOI: 10.1021/ie200501p.
  • Wu, J. L.; Hu, Y. N.; Zhou, J. W.; Qian, W. B.; Lin, X. Q.; Chen, Y.; Chen, X. C.; Xie, J. J.; Bai, J. X.; Ying, H. J. Separation of D-lactic Acid from Aqueous Solutions Based on the Adsorption Technology. Colloid. Surface A 2012, 407, 29–37. DOI: 10.1016/j.colsurfa.2012.04.051.
  • Kammerer, J.; Carle, R.; Kammerer, D. R. Adsorption and Ion Exchange: Basic Principles and Their Application in Food Processing. J. Agr. Food Chem 2011, 59, 22–42. DOI: 10.1021/jf1032203.
  • Giles, C. H. A General Treatment and Classification of the Solute Adsorption Isotherm. J. Colloid Interfaces Sci 1974, 47, 755–778. DOI: 10.1016/0021-9797(74)90252-5.
  • Wang, W.; Li, H. B.; Huang, J. H.; Liu, Y. N. Tunable Porosity and Polarity of the Polar Hyper-cross Linked Resins and the Enhanced Adsorption toward Phenol. Ind. Eng. Chem. Res 2016, 55, 12213–12221. DOI: 10.1021/acs.iecr.6b03320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.