264
Views
1
CrossRef citations to date
0
Altmetric
Membranes

Effects of structure and chemistry on electrochemical transport properties of anion exchange membranes for separation of CO2

, , &
Pages 212-219 | Received 25 Nov 2021, Accepted 20 Jul 2022, Published online: 28 Jul 2022

References

  • Hagesteijn, K. F. L.; Jiang, S.; Ladewig, B. P. A Review of the Synthesis and Characterization of Anion Exchange Membranes. J. Mater. Sci 2018, 53(16), 11131–11150. DOI: 10.1007/s10853-018-2409-y.
  • Tokioka, R.; Miyamoto, H. Electrochemical Separation of Carbon Dioxide Using Anion Exchange Membrane from Simulated Flue Gas. Kagaku Kogaku Ronbunshu. 2015, 41(5), 298–304. DOI: 10.1252/kakoronbunshu.41.298.
  • Kiss, A. M.; Myles, T. D.; Grew, K. N.; Peracchio, A. A.; Nelson, G. J.; Chiu, W. K. S. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes. J. Electrochem. Soc 2013, 160(9), F994–F999. DOI: 10.1149/2.037309jes.
  • Katayama, Y.; Yamauchi, K.; Hayashi, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Kikkawa, Y.; Negishi, T.; Watanabe, S.; Isomura, T., et al. Anion-Exchange Membrane Fuel Cells with Improved CO2 Tolerance: Impact of Chemically Induced Bicarbonate Ion Consumption. ACS Appl. Mater. Interfaces. 2017, 9(34), 28650–28658. DOI: 10.1021/acsami.7b09877.
  • Si, J.; Lu, S.; Xu, X.; Peng, S.; Xiu, R.; Xiang, Y. A Gemini Quaternary Ammonium Poly (Ether Ether Ketone) anion-exchange Membrane for Alkaline Fuel Cell: Design, Synthesis, and Properties. ChemSusChem. 2014, 7(12), 3389–3395. DOI: 10.1002/cssc.201402664.
  • Muumlnchinger, A.; Kreuer, K. D. Selective Ion Transport through Hydrated Cation and Anion Exchange Membranes I. The Effect of Specific Interactions. J. Membr. Sci 2019, 592, 154–163.
  • Vandiver, M. A. Effect of Hydration on the Mechanical Properties of Anion Exchange Membranes; Colorado School of Mines Golden, CO, 2015.
  • Pan, Z. F.; An, L.; Zhao, T. S.; Tang, Z. K. Advances and Challenges in Alkaline Anion Exchange Membrane Fuel Cells. Prog. Energy Combust. Sci 2018, 66, 141–175. DOI: 10.1016/j.pecs.2018.01.001.
  • Eriksson, B.; Grimler, H.; Carlson, A.; Ekström, H.; Wreland Lindström, R.; Lindbergh, G.; Lagergren, C. Quantifying Water Transport in Anion Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy. 2019, 44(10), 4930–4939. DOI: 10.1016/j.ijhydene.2018.12.185.
  • Roy, A.; Peng, J.; Zawodzinski, T. Determining Electro-Osmotic Drag of Water in Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, Seattle, WA; 2018.
  • Karas, F.; Hnat, J.; Paidar, M.; Schauer, J.; Bouzek, K. Determination of the ion-exchange Capacity of anion-selective Membranes. Int. J. Hydrogen Energy. 2014, 39(10), 5054–5062. DOI: 10.1016/j.ijhydene.2014.01.074.
  • Disabb-Miller, M. L.; Zha, Y.; DeCarlo, A. J.; Pawar, M.; Tew, G. N.; Hickner, M. A. Water Uptake and Ion Mobility in Cross-Linked Bis(terpyridine)ruthenium-Based Anion Exchange Membranes. Macromolecules. 2013, 46(23), 9279–9287. DOI: 10.1021/ma401701n.
  • You, W.; Padgett, E.; MacMillan, S. N.; Muller, D. A.; Coates, G. W. Highly Conductive and Chemically Stable Alkaline Anion Exchange Membranes via ROMP of trans-cyclooctene Derivatives. Proc. National Academy Sci 2019, 116(20), 9729. DOI: 10.1073/pnas.1900988116.
  • Van der Bruggen, B. *. Chapter 7 - Ion-exchange Membrane systems—Electrodialysis and Other Electromembrane Processes. In Fundamental Modelling of Membrane Systems; Luis, P., Ed.; Elsevier: Cambridge, MA, 2018; pp 251–300.
  • Truong, V. M.; Duong, N. B.; Wang, C.-L.; Yang, H. Effects of Cell Temperature and Reactant Humidification on Anion Exchange Membrane Fuel Cells. Materials (Basel). 2019, 12(13), 2048. DOI: 10.3390/ma12132048.
  • Duan, Q.; Ge, S.; Wang, C.-Y. Water Uptake, Ionic Conductivity and Swelling Properties of anion-exchange Membrane. J. Power Sources. 2013, 243, 773–778. DOI: 10.1016/j.jpowsour.2013.06.095.
  • Kuwertz, R.; Kirstein, C.; Turek, T.; Kunz, U. Influence of Acid Pretreatment on Ionic Conductivity of Nafion® Membranes. J. Membr. Sci 2015, 500, 225–235. DOI: 10.1016/j.memsci.2015.11.022.
  • Stenina, I.; Golubenko, D.; Nikonenko, V.; Yaroslavtsev, A. Selectivity of Transport Processes in Ion-Exchange Membranes: Relationship with the Structure and Methods for Its Improvement. Int. J. Mol. Sci 2020, 21(15), 5517. DOI: 10.3390/ijms21155517.
  • Li, Y. S.; Zhao, T. S.; Yang, W. W. Measurements of Water Uptake and Transport Properties in anion-exchange Membranes. Int. J. Hydrogen Energy. 2010, 35(11), 5656–5665. DOI: 10.1016/j.ijhydene.2010.03.026.
  • Spurgeon, J. M.; Lewis, N. S. Proton Exchange Membrane Electrolysis Sustained by Water Vapor. Energy Environ. Sci 2011, 4(8), 2993–2998. DOI: 10.1039/c1ee01203g.
  • Fornaciari, J. C.; Gerhardt, M. R.; Zhou, J.; Regmi, Y. N.; Danilovic, N.; Bell, A. T.; Weber, A. Z. The Role of Water in Vapor-fed Proton-Exchange-Membrane Electrolysis. J. Electrochem. Soc 2020, 167(10), 104508. DOI: 10.1149/1945-7111/ab9b09.
  • Bianchi, F. *.; Bosio, B.; Baldinelli, A.; Barelli, L. Optimization of a Reference Kinetic Model for Solid Oxide Fuel Cells. Catalysts. 2020, 10(1), 104. DOI: 10.3390/catal10010104.
  • Landon, J. *.; Kitchin, J. R. Electrochemical Concentration of Carbon Dioxide from an Oxygen/Carbon Dioxide Containing Gas Stream. J. Electrochem. Soc 2010, 157(8), B1149. DOI: 10.1149/1.3432440.
  • Veh, P.; Britton, B.; Holdcroft, S.; Zengerle, R.; Vierrath, S.; Breitwieser, M. Improving the Water Management in anion-exchange Membrane Fuel Cells via ultra-thin, Directly Deposited Solid Polymer Electrolyte. RSC Adv 2020, 10(15), 8645–8652. DOI: 10.1039/C9RA09628K.
  • Carter, B. M.; Keller, L.; Wessling, M.; Miller, D. J. Preparation and Characterization of Crosslinked Poly(vinylimidazolium) Anion Exchange Membranes for Artificial Photosynthesis. J. Mater. Chem. A. 2019, 7(41), 23818–23829. DOI: 10.1039/C9TA00498J.
  • Nikonenko, V.; Nebavsky, A.; Mareev, S.; Kovalenko, A.; Urtenov, M.; Pourcelly, G. Modelling of Ion Transport in Electromembrane Systems: Impacts of Membrane Bulk and Surface Heterogeneity. Appl. Sci. 2019, 9(1), 25. DOI: 10.3390/app9010025.
  • Technical Data Sheet - fumapem FAA-3-30. FUMATECH BWT GmbH: 2018.
  • Technical Data Sheet - fumapem FAA-3-PE-30. FUMATECH BWT GmbH: 2018.
  • Yamaguchi, T.; Miyata, F.; Nakao, S.-I. Pore-filling Type Polymer Electrolyte Membranes for a Direct Methanol Fuel Cell. J. Membr. Sci 2003, 214(2), 283–292. DOI: 10.1016/S0376-7388(02)00579-3.
  • Ebadi Amooghin, A.; Mirrezaei, S.; Sanaeepur, H.; Sharifzadeh, M. Gas Permeation Modeling through a Multilayer Hollow Fiber Composite Membrane. J. Membr. Sci. Res 2020, 6, 125–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.